
The ELFE Programming Language
by Christophe de Dinechin

Taodyne SAS, 2 allee de la Tour, Valbonne, France

1 Introduction
ELFE stands for Extensible Language For Everyday . The name states the language's objectives:

� It is extensible. One of the de�ning characteristics of ELFE is that you add new language
constructs as easily as classes or functions in other programming languages. For example,
the if-then-else construct is speci�ed in the ELFE core library using a de�nition similar
to what is shown in Figure 1 below:

if true then X else Y -> X
if false then X else Y -> Y

Figure 1. Adding the if-then-else construct to ELSE

� ELFE is intended for everyday programming, making simple, everyday things easy to
write, express and comprehend. For example, in ELFE, using the de�nition from Figure 1
you can write a condition as shown in Figure 2 below:

if BankAccount < 0 then
writeln "Warning shots fired"

else
writeln "Round of cakes and applause"

Figure 2. A simple test in ELFE

To achieve the highest degree of extensibility, ELFE builds on meta-programming , i.e. programs
that manipulate programs. In many programming languages, meta-programming is an arcane
technique best reserved for gurus1. In ELFE, on the other hand, it is so central that it's just the
way programs run. An ELFE program execution can be understood as the way the program
rewrites itself over time. Yet this is done in such a simple way that you hardly ever notice that
you are actually manipulating programs and not just data.

This leads to the second objective, everyday programming. ELFE addresses many issues
head on, which have proven thorny for programmers over the years, due to the design and limi-
tations of existing programming languages. This includes input and output2, complex data
structures, program optimizations, and more. Thanks to meta-programming, ELFE can offer
solutions to these problems that are elegant, e�cient and easy to understand.

In short, ELFE is an extraordinarily simple language, which at �rst sight looks and feels
much like familiar programming languages (C, Pascal, JavaScript), while o�ering the full power
and capabilities of more rarely used functional and homoiconic languages such as Lisp.

1.1 Keeping it simple
In order to keep programs easy to write and read, the ELFE syntax and semantics are deliber-
ately very simple. As Saint-Exupery once said, perfection is achieved, not when there's nothing
to add, but when there's nothing left to take away. And in ELFE, there isn't much left to be
removed. It's often hard to �nd a single character you could erase from an ELFE program, but
that terseness does not come at the price of obfuscation.

1. This includes techniques such as template meta-programming in C++, or hygienic macros in Lisp.
2. Various programming languages have implemented I/Os using built-in functions (PRINT in Basic, writeln

in Pascal), variadic functions with special runtime conventions (printf in C), operator overloading (<< in C++),
monads (Haskell). Each approach has its own set of limitations.

1

Indeed, the ELFE syntax will seem very natural to most programmers, except for what it's
missing: ELFE makes little use of parentheses and other punctuation characters so typical of
programming that they became a staple of computer screens in movies. For example, the syntax
of blocks in ELFE is based on indentation, not on curly braces like in C and Java. Indentation
requires less typing, and enforces a visual structure that matches the actual structure of the pro-
gram. Furthermore, there was a conscious design decision to more generally keep only symbols
that had an active role in the meaning of the program, as opposed to a purely syntactic role. So
in ELFE, there are no semi-colons, dollar or at sign, and few parentheses. ELFE programs look
a little like pseudo-code, except of course that they can be compiled and run.

This simplicity translates into the internal representations of programs, which makes meta-
programming not just possible, but easy and fun. Any ELFE program or data can be repre-
sented with just 8 data types: integer, real, text, name, infix, prefix, posfix and block. For
example, the internal representation for 3 * sin X is an in�x * node with two children, the left
child of * being integer 3, and the right child of * being a pre�x with the name sin on the left
and the name X on the right. This internal representation of programs, also known as an
abstract syntax tree (AST), is a key data structure in ELFE, and you will soon discover just how
powerful this simple concept is.

The data structure chosen in ELFE to represent programs is simple enough to make meta-
programming practical and easy. Meta-programming is the ability for a program to manipulate
programs. In ELFE, meta-programming is so essential that it forms the basis for program inter-
pretation, also known as evaluation. You evaluate a program by continuously rewriting it using
meta-programming rules, until there is nothing left to rewrite. This is all de�ned with a single
notation, ->, which reads rewrites-as or transforms-into, and is the single most fundamental
operator in ELFE. In a sense, you can say that ELFE is a language with a single operator, ->.
This is one good reason why it is so hard to remove much from ELFE: a language with no oper-
ator at all can't be that useful.

1.2 Extending the programming language to suit your needs

At the same time, this rewriting mechanism is the key to language extensibility. With ELFE,
you can add language features yourself, instead of cursing the language designers who did not
have the foresight to do it for you. All you need is to choose the right notation and, using the
rewrites-as operator, tell the program how to transform your chosen program notation into
something that already exists.

This technique uni�es all sorts of program declarations that are distinct in languages such as
C. You can use a rewrite rule to de�ne variables (rewriting a name), functions (rewriting a func-
tional notation), operators (rewriting a mathematical expression), even program constructs
(rewriting anything else). Rewrite rules are like an extraordinarily powerful macro mechanism,
which, as a programmer, you can trigger at compilation time, at runtime, or any mixture of
both that suits your needs. You can even de�ne your own optimizations using rewrite rules such
as X+0 -> X or X-X -> 0.

As an element of proof that the approach works, ELFE actually uses rewrites to de�ne basic
programming language constructs in its standard library. Actually, if-then-else, while loops,
classes, etc, are all declared in the ELFE standard library using regular rewrite rules. They are
not built-in elements integrated in the compiler, as they would be in languages such as C, C++
or Java. This makes a huge di�erence, because now you can de�ne your own. It's the same dif-
ference as between PRINT in Basic and printf in C. The former is hard-coded in the language.
The latter is a library construct which you can replicate or leverage to suit your needs.

The process of extending the language in this manner is so simple and safe to use that you
can also perfectly consider language notations or compilation techniques that are useful only in
a particular context. With ELFE, creating your own domain-speci�c languages (DSLs) is just
part of normal, everyday programming.

2 Section 1

This particular context can even be a section of a larger program. Rewrite declarations are
subject to scoping and visibility rules similar to what is commonly found in other languages for
variable or function declarations. So you can very easily and safely compose and combine pro-
gram transformations, much like you can compose and combine functions and variables in C.
You can declare a local variable in C visible only in a given function; you can declare a local
rewrite rule in ELFE to perform a transformation that applies only in a given piece of code.

1.3 Using Moore's law instead of �ghting it
The design of ELFE is in response to the following observation: programmers have to deal with
exponentially-growing program complexity. The reason is that the complexity of programs indi-
rectly follows Moore's law, since users want to fully bene�t from the capabilities of new hard-
ware generations. But our brains do not follow a similar exponential law, so we need increas-
ingly sophisticated tools to bridge the gap with higher and higher levels of abstraction.

Over time, this lead to a never ending succession of programming paradigms , each one
intended to make the next generation of hardware accessible to programmers. For example,
object-oriented programming was initially fueled by the demands of graphical user interfaces,
even if it found myriads of other applications later. Programmers who could use concepts such
as windows, menus or icons in their design, and translate them into objects in the code using
object-oriented tools, instantly had a leg up over programmers using procedural languages.

Unfortunately, a side e�ect of this continuous change in programming paradigms is that code
designed with an old approach quickly becomes obsolete as a new programming model emerges.
For example, even if C++ was, at least initially, supposed to be somewhat compatible with C,
the core development model is so di�erent that C++, even early on, replicated core functionality
of C in a completely di�erent way (memory allocation, I/Os, containers, sorts, etc).

One language, Lisp, evaded this fate, largely thanks to its meta-programming capabilities. In
Lisp, it is possible to extend the language using, among other things, a powerful system of
macros. This made it much easier for Lisp to integrate major changes in programming para-
digms. Common Lisp was, to my knowledge, the first language to normalize object-oriented
extensions, long before C++. It did so simply by integrating well accepted, �eld-tested libraries
and idioms that transformed object-oriented Lisp into lower-level Lisp. The self-improvement
capabilities of Lisp explain why this is the only programming language designed in the 1950's
that still have an active role in the development and improvement of modern computer science.

ELFE replicates the self-improvement capability of Lisp, but makes it central. Furthermore,
it also adds a focus on user-friendly notations. In ELFE, the notation comes �rst, and the lan-
guage is supposed to help you use this notation in your programs. By contrast, in Lisp, you
have to adapt to the parenthese-heavy Lisp syntax, and many programmers �nd this daunting.

In summary, ELFE helps programmers take advantage of Moore's law by adding new tricks
to their language over time. The long term vision is a language continuously and incrementally
made both more powerful and easier to use thanks to a large number of community-developed
and �eld-tested language extensions.

1.4 Examples
The key characteristics of ELFE outlined above are best illustrated with a few short examples,
going from simple programming to more advanced functional-style programming to simple meta-
programming.

Hello World A �hello world� program is very often the �rst program shown to introduce a
new programming language, and I will follow this long-established tradition. A program writing
Hello World in ELFE is shown in Figure 3.

writeln "Hello World"

Figure 3. Example of Hello World program in ELFE

This program is only notable by what it lacks: no semi-colons, no parentheses, no main func-
tion. For very simple programs like this one, ELFE is just as terse as a typical scripting lan-
guage.

Introduction 3

Factorial function The factorial is a well-known mathematical function, often used to illus-
trate programming languages because it is a good way to introduce the notion of recursion.
Figure 4 illustrates the de�nition of the factorial function in ELFE:

// Declaration of the factorial notation
0! -> 1
N! -> N * (N-1)!

Figure 4. Declaration of the factorial function

As you can see, the code is quite short. Actually, it is probably surprisingly short for devel-
opers coming from a C or Java background. Yet it contains everything you need, and not much
more:

� The �rst line indicates that the notation 0! transforms into 1. You can interpret it as a
form of operator overloading that operates only on the value 0.

� The second line indicates how to transform the notation N! for other values of N than 0.

The resulting code is very close to a mathematical de�nition of the factorial3. If you try to
remove any character from this program (except spaces), you end up with a program that is
missing an essential aspect of what a factorial is.

Map, reduce, �lter Figure 5 illustrates operations usually known as map, reduce and �lter .
These operations are characteristic of a programming paradigm called functional programming ,
because they take functions as arguments. In ELFE, map, reduce and �lter operations can all
use an infix with notation with slightly different forms for the parameters. Section 4.1.10
describes these operations in more details.

// Map: Computing the factorial of the first 10 integers
// The result is 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880
(N->N!) with 0..9

// Reduce: Compute the sum of the first 5 factorials, i.e. 409114
(X,Y -> X+Y) with (N->N!) with 0..5

// Filter: Displaying the factorials that are multiples of 3
// The result is 6, 24, 120, 720, 5040, 40320, 362880
(N when N mod 3 = 0) with (N->N!) with 0..9

Figure 5. Map, reduce and �lter

Figure 6 illustrates the ELFE de�nition of the if-then-else statement, which will serve as
our �rst introduction to meta-programming. Here, we tell the compiler how to transform a par-
ticular form of the source code (the if-then-else statement). Note how this transformation uses
the same -> notation we used to declare a factorial function in Figure 4. This shows how, in
ELFE, meta-programming integrates transparently with regular programming.

// Declaration of if-then-else
if true then TrueClause else FalseClause -> TrueClause
if false then TrueClause else FalseClause -> FalseClause

Figure 6. Declaration of if-then-else

The next sections will clarify how these operations work.

1.5 Concept programming

Concept programming is the underlying design philosophy behind ELFE. The core idea is very
simple:

Programming is the art of transforming ideas (i.e. concepts that belong to concept space)
into artifacts such as programs or data structure (i.e. code that belongs to code space).

3. A mathematician might use the = sign for de�nitions, but the -> operator really indicates a program
transformation, not an equality.

4 Section 1

From concept to code: a lossy conversion Concepts and code do not exist in the same
context, do not obey the same rules, and are generally hard to compare. However, experience
shows that it is generally a good idea to make the code look and feel as close to the concept it
represents as possible. Unfortunately, doing so is incredibly di�cult in practice, in large part
because computers and code are limiting our ability to represent arbitrary concepts.

We are quite good at building abstractions that bridge the gap, for example integer data
types and arithmetic that mimic mathematical integers and arithmetic. But then we tend to
forget that these are only abstractions. We get caught when they do not behave like the real
thing, for example when an int over�ows or wraps around, something that mathematical inte-
gers never do.

The key takeaway is that the conversion of concept to code is necessarily lossy . Minimizing
the loss remains a worthy goal, but doing so is di�cult. By drawing our attention to the conver-
sion process itself, concept programming gives us new and useful tools to solve old problems.
Pseudo-metrics Among the tools brought by concept programming is a set of pseudo-metrics
allowing us to better evaluate the code we create. These are called pseudo-metrics because they
apply to things that in all fairness cannot really be measured, like the distance between concepts
in our brains and code in the computer. At the same time, they are easy to understand and use,
and allow us to identify and solve problems that are otherwise hard to pinpoint.

Key pseudo-metrics in concept programming include:
1. Syntactic noise is a discrepancy between the appearance of the code and the usual or

desired notation for the associated concept. For example, the usual mathematical opera-
tion 1+ 2 is ideally represented in the code by 1+2. Notations such as (+ 1 2) or add(1,
2), by contrast, introduce a little bit of syntactic noise.

2. Semantic noise is a discrepancy between the meaning of the code and the usual or
desired notation for the associated concept. For example, when one needs to consider if
computing X+1 possibly over�ows, runs out of memory, throws an exception or takes an
unpredictable amount of time to compute, then a little bit of semantic noise appears.

3. Bandwith is the fraction of the concept space that is covered by a given code. The larger
the bandwidth, the more general the code is. For example, the mathematical minimum
concept includes the ability to compare almost anything provided there is an order rela-
tion (which may be total or partial); it applies to functions, to sets, to series, and so on.
So it's fair to say that the C function shown in Figure 7 is very narrow band:

int min(int x, int y) { return x < y ? x : y; }

Figure 7. Narrow-band min in C

4. The signal-noise ratio is the fraction of the code that is actually useful to solve the
problem from concept space, as opposed to code that is there only because of code-space
considerations. In the same min example given above, semi-colons or curly braces have
little to do with the problem at hand: they are noise rather than signal.

An amusing observation about this choice of terminology is that just like in engineering, noise
cannot ever be completely eliminated, though many techniques exist to reduce it; and just like
in art, what is noise to one person may be music to another.
In�uence on ELFE ELFE is the �rst programming language designed speci�cally with con-
cept programming in mind. As a result, it is also the �rst programming language that explicitly
attempts to optimize the pseudo-metrics listed above.

1.6 State of the implementation
The current implementation of the language is available as an open-source software, at URL
http://c3d.github.io/elfe. A few details of the implementation are given in Section 6.

There are currently four wildly di�erent implementations in one program, corresponding to
di�erent levels of optimization:
� An interpreted mode where tree rewrites are applied immediately. This implementation

can be compiled by itself, for system with insu�cient resources for higher optimizations.
The interpreter is practically complete.

Introduction 5

� A bytecode mode, where a �rst pass analyzes code ahead of time in order to generate a
more optimized, faster evaluation. The bytecode mode is currently being redesigned, and
as a result no longer works very well.

� A dynamic compiler that uses LLVM to generate machine code on the �y to acclerate the
evaluation of the bytecode.

� An optimizing compiler that uses type inference to identify the low-level machine types
most suitable to represent the ELFE program.

Historically, ELFE derives from an earlier project called XL. Experiments with XL have shown
that it was possible to achieve performance within 15% of optimized C code in some cases. The
current ELFE implementation is still very far from that objective, however, and does not even
compete with semi-interpreted languages such as Lua or Python.

2 Syntax
ELFE source text is encoded using UTF-8. Source code is parsed into a an abstract syntax tree
format known simply as tree in the ELFE type system.

Nodes in a tree can be any of four literal node types (integer, real, text and symbol),
which are the leaves of the tree, and four structured node types (prefix, postfix, infix and
block), which are the inner nodes:

� integer nodes represent integer constants such as 21 in the source tree.

� real nodes represent �oating-point constants such as 3.14.

� text nodes represent text constants such as "Hello World".

� symbol nodes represent names such as ABC and operator symbols such as <=.

� prefix nodes represent pre�x operations such as sin X.

� postfix nodes represent post�x operations such as 3%.

� infix nodes represent in�x operations such as A+B.

� block nodes represent grouping blocks such as (A) or {3}.

Note that line breaks normally parse as infix operators, where the operator is a �line break�,
and that indentation normally parses as block nodes, where the opening and closing elements
correspond to indent and unindent.

The precedence of operators is given by the elfe.syntax con�guration �le. It can also be
changed dynamically in the source code using the syntax statements. This is detailed in Sec-
tion 2.6. Both methods to de�ne syntax are called syntax con�guration .

The rest of this document will occasionally refer to normal ELFE for defaults settings such
as the default syntax con�guration, as shipped with the standard ELFE distribution.

2.1 Spaces and indentation
Spaces and tabs are generally not signi�cant, but may be required to separate operator or name
symbols. For example, there is no di�erence between A B (one space) and A B (four spaces),
but both are di�erent from AB (zero space).

Spaces and tabs are signi�cant at the beginning of lines. ELFE will use them to determine
the level of indentation from which it derives program structures (o�-side rule), as illustrated in
Figure 8. Both space or tabs can be used for indentation, but cannot be mixed for indentation
in a single source �le. In other words, if the �rst indented line uses spaces, all other indentation
must be done using spaces, and similarly for tabs.

if A < 3 then
write "A is too small"

else
write "A is too big"

Figure 8. O�-side rule: Using indentation to mark program structure.

6 Section 2

Spaces are also signi�cant around an operator, as they can change the way the operator is
parsed. If you write X-Y or X - Y, then this is parsed as an infix, which in that case represents
a subtraction. On the other hand, if you write Write -X, then the minus sign is parsed as a
prefix, which is itself a child of another prefix, the Write symbol.

2.2 Comments and spaces
Comments are section of the source text which are typically used for documentation purpose
and play no role in the execution of the program. Comments begin with a comment separator,
and �nish with a comment terminator.

Comments in normal ELFE are similar to C++: they begin with /* and �nish with */, or
alternatively they begin with // and �nish at the end of line. This is illustrated in Figure 9.

// This is a single-line comment
/* This particular comment

can be placed on multiple lines */

Figure 9. Single-line and multi-line comments
While comments play no actual role in the execution of a normal ELFE program, they are

actually recorded as attachments in the parse tree. It is possible for some special code to access
or otherwise use these comments. For example, a documentation generator can read comments
and use them to construct documentation automatically.

2.3 Literals
Four literal node types represent atomic values, i.e. values which cannot be decomposed into
smaller units from an ELFE point of view. They are also the leaves of a tree, i.e. the outermost
nodes, the nodes that don't have children. Literals include:

1. Integer constants

2. Real constants

3. Text literals

4. Symbols and names

2.3.1 Integer constants

Integer constants4 such as 123 consist of one or more digits (0123456789) interpreted as
unsigned radix-10 values. Note that -3 is not an integer literal but a pre�x - preceding the
integer literal. The integer constant is de�ned by the longest possible sequence of digits in the
source code.

Integer constants can also be expressed in any radix between 2 and 36. Such constants begin
with a radix-10 integer specifying the radix, followed by a hash sign #, followed by valid digits in
the given radix. For instance, 2#1001 represents the same integer constant as 9. If the radix is
larger than 10, letters are used to represent digits following 9. For example, 255 can be repre-
sented in hexadecimal as 16#FF. Upper-case and lower-case letters represent the same value, and
only the non-accented letters in the range A-Z or a-z are accepted, i.e. 16#àç is invalid.

The underscore character _ can be used to separate digits, but does not change the value
being represented. For example 1_000_000 is a more readable way to write 1000000, and
16#FFFF_FFFF is the same as 16#FFFFFFFF. Underscore characters can only separate digits, i.e.
1__3, _3 or 3_ are all invalid.

12
1_000_000
16#FFFF_FFFF
2#1001_1001_1001_1001

Figure 10. Valid integer constants

4. At the moment, ELFE uses the largest native integer type on the machine (generally 64-bit) in its internal
representations. The scanner detects over�ow in integer constants.

Syntax 7

2.3.2 Real constants
Real constants such as 3.14 consist of one or more digits (0123456789), followed by a dot . fol-
lowed by one or more digits (0123456789). Note that there must be at least one digit after the
dot, i.e. 1. is not a valid real constant, but 1.0 is.

Real constants can have a radix and use underscores to separate digits like integer constants.
For example 2#1.1 is the same as 1.5 and 3.141_592_653 is an approximation of �.

A real constant can have an exponent, which consists of an optional hash sign #, followed by
the character e or E, followed by optional plus + or minus - sign, followed by one or more dec-
imal digits 0123456789. For example, 1.0e-3 is the same as 0.001 and 1.0E3 is the same as
1000.0. The exponent value is always given in radix-10, and indicates a power of the given
radix. For example, 2#1.0e3 represents 23, in other words it is the same as 8.0.

The hash sign in the exponent is required for any radix greater than 14, since in that case
the character e or E is also a valid digit. For instance, 16#1.0E1 is approximately the same as
1.05493, whereas 16#1.0#E1 is the same as 16.0.

1.0
3.1415_9265_3589_7932
2#1.0000_0001#e-128

Figure 11. Valid real constants

2.3.3 Text literals
Text is any valid UTF-8 sequence of printable or space characters surrounded by text delimiters,
such as "Hello Möndé". Except for line-terminating characters, the behavior when a text
sequence contains control characters or invalid UTF-8 sequences is unspeci�ed. However, imple-
mentations are encouraged to preserve the contents of such sequences.

The base text delimiters are the single quote ' and the double quote ". They can be used to
enclose any text that doesn't contain a line-terminating character. The same delimiter must be
used at the beginning and at the end of the text. For example, "Shouldn't break" is a valid
text surrounded by double quotes, and 'He said "Hi"' is a valid text surrounded by single
quotes.

In text surrounded by base delimiters, the delimiter can be inserted by doubling it. For
instance, except for the delimiter, 'Shouldn''t break' and "He said ""Hi""" are equivalent
to the two previous examples.

Other text delimiters can be speci�ed, which can be used to delimit text that may include
line breaks. Such text is called long text . With the default con�guration, long text can be delim-
ited with << and >>.

"Hello World"
'Où Toto élabora ce plan çi'
<<This text spans
multiple lines>>

Figure 12. Valid text constants

When long text contains multiple lines of text, indentation is ignored up to the indentation
level of the �rst character in the long text. Figure 13 illustrates how long text indent is elimi-
nated from the text being read5.

Source code Resulting text
<< Long text can

contain indentation
or not,

it's up to you>>

Long text can
contain indentation
or not,

it's up to you

Figure 13. Long text and indentation

5. This solution is not entirely satisfactory, and the behavior may change over time. It is a trade-o� that
allows text to be pasted as-is or indented with the source code, but it leads to inconsistencies for text that con-
tains space at the beginning of lines.

8 Section 2

The text delimiters are not part of the value of text literals. Therefore, text delimiters are
ignored when comparing texts.

2.3.4 Name and operator symbols
Names begin with an alphabetic character A..Z or a..z or any non-ASCII UTF-8 character, fol-
lowed by the longuest possible sequence of alphabetic characters, digits or underscores. Two con-
secutive underscore characters are not allowed. Thus, Marylin_Monroe, élaböràtion or j1 are
valid ELFE names, whereas A-1, 1cm or A__2 are not.

Operator symbols, or operators , begin with an ASCII punctuation character6 which does not
act as a special delimiter for text, comments or blocks. For example, + or -> are operator sym-
bols. An operator includes more than one punctuation character only if it has been declared in
the syntax (typically in the syntax con�guration �le). For example, unless the symbol %, (per-
cent character followed by comma character) has been declared in the syntax, 3%,4% will contain
two operator symbols % and , instead of a single %, operator.

A special name, the empty name, exists only as a child of empty blocks such as ().
After parsing, operator and name symbols are treated identically. During parsing, they are

treated identically except in the expression versus statement rule explained in Section 2.5.4.

x
X12_after_transformation
� _times_�
+
-->
<<<>>>

Figure 14. Examples of valid operator and name symbols

2.4 Structured nodes
Four structured node types represent combinations of nodes. They are:

1. Infix nodes, representing operations such as A+B or A and B, where the operator is
between its two operands.

2. Pre�x nodes, representing operations such as +3 or sin x, where the operator is before
its operand.

3. Post�x nodes, representing operations such as 3% or 3 cm, where the operator is after its
operand.

4. Blocks, representing grouping such as (A+B) or {lathe;rinse;repeat}, where the opera-
tors surround their operand.

In�x, pre�x and post�x nodes have two children nodes. Blocks have a single child node. Their
relative precedence in complex expressions are de�ned in the elfe.syntax �le.

2.4.1 In�x nodes
An in�x node has two children separated by a name or operator symbol. In�x nodes are used,
among other things, for:

� binary arithmetic operators such as A+B,

� binary logic operators such as A and B,

� to separate statements with semi-colons ; or line breaks (referred to as NEWLINE in the
syntax con�guration).

2.4.2 Pre�x and post�x nodes
Pre�x and post�x nodes have two children, one on the left, one on the right, without any sepa-
rator between them. The only di�erence between pre�x and post�x nodes is in what is consid-
ered the �operation� and what is considered the �operand''. For a pre�x node, the operation is
on the left and the operand on the right, whereas for a post�x node, the operation is on the
right and the operand on the left.

6. Non-ASCII punctuation characters or digits are considered as alphabetic.

Syntax 9

Pre�x nodes are used for functions. The default for a name or operator symbol (i.e. one that
is not explicitly declared in the elfe.syntax �le or con�gured using a syntax statement) is to
be treated as a pre�x function, i.e. to be given a common function precedence referred to as
FUNCTION in the syntax con�guration. For example, sin in the expression sin x is treated as a
function.

2.4.3 Block nodes

Block nodes have one child bracketed by two delimiters. Normal ELFE recognizes the following
pairs as block delimiters:

� Parentheses, as in (A)

� Brackets, as in [A]

� Curly braces, as in {A}

� Indentation, as shown surrounding the write statements in Figure 8. The delimiters for
indentation are referred to as INDENT and UNINDENT in the syntax con�guration.

2.5 Parsing rules
The ELFE parser only needs a small number of rules to parse any ELFE source code as a tree:

1. Precedence

2. Associativity

3. In�x versus pre�x versus post�x

4. Expression versus statement

These rules are detailed below.

2.5.1 Precedence

In�x, pre�x, post�x and block symbols are ranked according to their precedence, represented as
a non-negative integer. The precedence is speci�ed by the syntax con�guration, either in the
syntax con�guration �le, elfe.syntax, or through syntax statements in the source code. This
is detailed in Section 2.6.

Symbols with higher precedence associate before symbols with lower precedence. For
instance, if the symbol * has in�x precedence value 300 and symbol + has in�x precedence value
290, then the expression 2+3*5 will parse as an in�x + whose right child is an in�x *.

The same symbol may receive a di�erent precedence as an in�x, as a pre�x and as a post�x
operator. For example, if the precedence of - as an in�x is 290 and the precedence of - as a
pre�x is 390, then the expression 3 - -5 will parse as an in�x - with a pre�x - as a right child.

The precedence associated to blocks is used to de�ne the precedence of the resulting expres-
sion. This precedence given to entire expressions is used primarily in the expression versus state-
ment rule described in Section 2.5.4.

2.5.2 Associativity

In�x operators can associate to their left or to their right.
The addition operator is traditionally left-associative, meaning that in A+B+C, A and B asso-

ciate before C. As a result, the outer in�x + node in A+B+C has an in�x + node as its left child,
with A and B as children, and C as its right child.

Conversely, the semi-colon in ELFE is right-associative, meaning that A;B;C is an in�x node
with an in�x as the right child and A as the left child.

Operators with left and right associativity cannot have the same precedence, as this would
lead to ambiguity. To enforce that rule, ELFE arbitrarily gives an even precedence to left-asso-
ciative operators, and an odd precedence to right-associative operators. For example, the prece-
dence of + in the default con�guration is 290 (left-associative), whereas the precedence of ^ is
395 (right-associative).

10 Section 2

2.5.3 In�x versus Pre�x versus Post�x

During parsing, ELFE needs to resolve ambiguities between infix and prefix symbols. For
example, in -A + B, the minus sign - is a pre�x, whereas the plus sign + is an in�x. Similarly,
in A and not B, the and word is in�x, whereas the not word is pre�x. The problem is therefore
exactly similar for names and operator symbols.

ELFE resolves this ambiguity as follows7:

� The �rst symbol in a statement or in a block is a pre�x: and in (and x) is a pre�x.

� A symbol on the right of an in�x symbol is a pre�x: and in A+and B is a pre�x.

� Otherwise, if the symbol has an infix precedence but no prefix precedence, then it is
interpreted as an in�x: and in A and B is an in�x.

� If the symbol has both an in�x precedence and a pre�x precedence, and either a space
following it, or no space preceding it, then it is an in�x: the minus sign - in A - B is an
in�x, but the same character is a pre�x in A -B.

� Otherwise, if the symbol has a post�x precedence, then it is a post�x: % in 3% is a post�x.

� Otherwise, the symbol is a pre�x: sin in write sin x is a pre�x.

In the �rst, second and last case, a symbol may be identi�ed as a pre�x without being given an
explicit precedence. Such symbols are called default pre�x . They receive a particular precedence
known as function precedence, identi�ed by FUNCTION in the syntax con�guration.

2.5.4 Expression versus statement

Another ambiguity is related to the way humans read text. In write sin x, sin y, most
humans will read this as a write instruction taking two arguments. This is however not entirely
logical: if write takes two arguments, then why shouldn't sin also take two arguments? In
other words, why should this example parse as write(sin(x),sin(y)) and not as
write(sin(x,sin(y)))?

The reason is that we tend to make a distinction between statements and expressions . This
is not a distinction that is very relevant to computers, but one that exists in most natural lan-
guages, which distinguish whole sentences as opposed to subject or complement.

ELFE resolves the ambiguity by implementing a similar distinction. The boundary is a par-
ticular in�x precedence, called statement precedence, denoted as STATEMENT in the syntax con�g-
uration. Intuitively, in�x operators with a lower precedence separate statements, whereas in�x
operators with a higher precedence separate expressions. For example, the semi-colon ; or else
separate statements, whereas + or and separate expressions.

More precisely:

� If a block's precedence is less than statement precedence, its content begins as an expres-
sion, otherwise it begins as a statement: 3 in (3) is an expression, write in {write} is a
statement.

� Right after an in�x symbol with a precedence lower than statement precedence, we are in
a statement, otherwise we are in an expression. The name B in A+B is an expression, but
it is a statement in A;B.

� A similar rule applies after pre�x nodes: {optimize} write A,B gives two arguments to
write, whereas in (x->x+1) sin x,y the sin function only receives a single argument.

� A default pre�x begins a statement if it's a name, an expression if it's a symbol: the
name write in write X begins a statement, the symbol + in +3 begins an expression.

In practice, there is no need to worry too much about these rules, since normal ELFE ensures
that most text parses as one would expect from daily use of English or mathematical notations.

2.6 Syntax con�guration
The default ELFE syntax con�guration �le, named elfe.syntax, looks like Figure 15 and speci-
�es the standard operators and their precedence.

7. All the examples given are in normal ELFE, i.e. based on the default elfe.syntax con�guration �le.

Syntax 11

INFIX
11 NEWLINE
21 -> =>
25 as
31 else into
40 loop while until
50 then require ensure
61 ;
75 with
85 := += -= *= /= ^= |= &=
100 STATEMENT
110 is
120 written
130 where
200 DEFAULT
211 when
231 ,
240 return
250 and or xor
260 in at contains
271 of to
280 .. by
290 = < > <= >= <>
300 & |
310 + -
320 * / mod rem
381 ^
500 .
600 :

PREFIX
30 data
40 loop while until
50 property constraint
121 case if return yield transform
350 not in out constant variable const var
360 ! ~
370 - + * /
401 FUNCTION
410 function procedure to type iterator
420 ++ --
430 &

POSTFIX
400 ! ? % cm inch mm pt px
420 ++ --

BLOCK
5 INDENT UNINDENT
25 '{' '}'
500 '(' ')' '[' ']'

TEXT
"<<" ">>"

COMMENT
"//" NEWLINE
"/*" "*/"

SYNTAX "C"
extern ;

Figure 15. Default syntax con�guration �le

12 Section 2

Syntax information can also be provided in the source code using the syntax name followed
by a block, as illustrated in Figure 16.

// Declare infix 'weight' operator
syntax (INFIX 350 weight)
Obj weight W -> Obj = W

// Declare postfix 'apples' and 'kg'
syntax

POSTFIX 390 apples kg
X kg -> X * 1000
N apples -> N * 0.250 kg

// Combine the notations declared above
if 6 apples weight 1.5 kg then

write "Success!"

Figure 16. Use of the syntax speci�cation in a source �le

As a general stylistic rule, it is recommended to use restraint when introducing new opera-
tors using syntax statements, as this can easily confuse a reader who is not familiar with the
new notation. On the other hand, there are cases where good use of new and well-chosen opera-
tors will render the code much more readable and easy to maintain.

Format of syntax con�guration Spaces and indentation are not signi�cant in a syntax con-
�guration �le. Lexical elements are identical to those of ELFE, as detailed in Section 2.3. The
signi�cant elements are integer constants, names, symbols and text. Integer constants are inter-
preted as the precedence of names and symbols that follow them. Name and symbols can be
given either with lexical names and symbols, or with text.

A few names are reserved for use as keywords in the syntax con�guration �le:

� INFIX begins a section declaring in�x symbols and precedence. In this section:

� NEWLINE identi�es line break characters in the source code

� STATEMENT identi�es the precedence of statements

� DEFAULT identi�es the precedence for symbols not otherwise given a precedence.
This precedence should be unique in the syntax confguration, i.e. no other symbol
should be given the DEFAULT precedence.

� PREFIX begins a section declaring pre�x symbols and precedence. In this section:

� FUNCTION identi�es the precedence for default pre�x symbols, i.e. symbols identi-
�ed as pre�x that are not otherwise given a precedence. This precedence should be
unique, i.e. no other symbol shoud be given the FUNCTION precedence.

� POSTFIX begins a section declaring post�x symbols and precedence.

� BLOCK begins a section declaring block delimiters and precedence. In this section:

� INDENT and UNINDENT are used to mark indentation and unindentation.

� TEXT begins a section declaring delimiters for long text.

� COMMENT begins a section declaring delimiters for comments. In this section:

� NEWLINE identi�es line breaks

� SYNTAX begins a section declaring external syntax �les. In normal ELFE, a �le C.syntax
is used to de�ne the precedences for any text between extern and ; symbols. This is
used to import C symbols using an approximation of the syntax of the C language, as
described in Section 4.4. The C.syntax con�guration �le is shown in Figure 17.

Syntax 13

INFIX
41 ,

PREFIX
30 extern ...
400 FUNCTION
450 short long unsigned signed

POSTFIX
100 *

BLOCK
500 '(' ')' '[' ']'

COMMENT
"//" NEWLINE
"/*" "*/"

Figure 17. C syntax con�guration �le

3 Language semantics

The semantics of ELFE is based entirely on the rewrite of abstract syntax trees represented by
the tree type. Tree rewrite operations de�ne the execution of ELFE programs, also called eval-
uation.

3.1 Tree rewrite operators

There is a very small set of tree rewrite operators that are given special meaning in ELFE and
treated specially by the ELFE compiler:

� Rewrite declarations are used to declare operations. They roughly play the role of func-
tions, operator or macro declarations in other programming languages. A rewrite declara-
tion takes the general form Pattern->Implementation and indicates that any tree
matching Pattern should be rewritten as Implementation.

0! -> 1
N! -> N*(N-1)!
3! // Computes 6

Figure 18. Example of rewrite declaration

� Data declarations identify data structures in the program. Data structures are nothing
more than trees that need no further rewrite. A data declaration takes the general form
of data Pattern. Any tree matching Pattern will not be rewritten further.

data complex(x, y)
complex(3,5) // Will stay as is

Figure 19. Example of data declaration

� Type declarations de�ne the type of variables. Type declarations take the general form of
an in�x colon operator Name:Type, with the name of the variable on the left, and the
type of the variable on the right.

14 Section 3

data person
first:text
last:text
age:integer

person
"John"
"Smith"
33

Figure 20. Example of data declarations containing type declarations

� Guards limit the validity of rewrite or data declarations. They use an in�x when with a
boolean expression on the right of when, i.e. a form like Declaration when Condition.

syracuse X:integer when X mod 2 = 0 -> X/2
syracuse X:integer -> 3*X+1

Figure 21. Example of guard to build the Syracuse suite

� Assignment change the value associated to a binding. Assignments take the form
Reference := Value, where Reference identi�es the binding to change.

Zero := 0

Figure 22. Example of assignment

� Sequence operators indicate the order in which computations must be performed. ELFE
has two in�x sequence operators, the semi-colon ; and the new-line NEWLINE.

write "Hello"; writeln " World"
emit_loud_beep

Figure 23. Example of sequence

� Index operators perform particular kinds of tree rewrites similar in usage to �structures�
or ``arrays'' in other programming languages. The notations Reference.Field and
Reference[Index] are used to refer to individual elements in a data structure. These are
only convenience notations for speci�c kinds of tree rewrites, see Section 3.1.7.

A[3] := 5
A.ref_count := A.ref_count + 1

Figure 24. Examples of index operators

3.1.1 Rewrite declarations

The in�x -> operator declares a tree rewrite. Figure 25 repeats the code in Figure 6 illustrating
how rewrite declarations can be used to de�ne the traditional if-then-else statement.

if true then TrueClause else FalseClause -> TrueClause
if false then TrueClause else FalseClause -> FalseClause

Figure 25. Examples of tree rewrites

The tree on the left of the -> operator is called the pattern. The tree on the right is called
the implementation of the pattern. The rewrite declaration indicates that a tree that matches
the pattern should be rewritten using the implementation.

The pattern contains constant and variable symbols and names:

� In�x symbols and names are constant, like + in A+B.

� Block-delimiting symbols and names are constant, like [and] in [A].

� A name on the left of a pre�x is a constant, like sin in sin X.

� A name on the right of a post�x is a constant, like cm in X cm.

� A name alone on the left of a rewrite is a constant, like X in X->0.

Language semantics 15

� Operators are constant, like + in X and +Y.
� All other names are variable.

Figure 26 highlight in blue italic all variable symbols in the declarations of Figure 25.
if true then TrueClause else FalseClause -> TrueClause
if false then TrueClause else FalseClause -> FalseClause

Figure 26. Constants vs. Variable symbols
Constant symbol and names form the structure of the pattern, whereas variable names form

the parts of the pattern which can match other trees. The names are called parameters and the
tree they match are called arguments.

For example, to match the pattern in Figure 25, the if, then and else words must match
exactly, but TrueClause may match any tree, like for example write "Hello". TrueClause is a
parameter, and write "Hello" would be the matching argument.

Note that there is a special case for a name as the pattern of a rewrite. A rewrite like X->0
binds X to value 0, i.e. X is a constant that must match in the tree being evaluated.

It is however possible to create a rewrite with a variable on the left by using a type declara-
tion. For example, the rewrite X:real->X+1 does not declare the variable X, but an anonymous
function8 that increments its input. Such rewrites are somewhat special, in particular because
they are not visible to their implementation so as to avoid in�nite recursion if their return type
is identical to their input type.

An expression may use declarations that follow it in the same sequence. Declarations are vis-
ible to prior elements in the sequence and need not be evaluated, as shown in Figure 27, which
computes 4. More generally, rewrites in a sequence belong to the context for the entire sequence
(contexts are de�ned in Section 3.2).

foo 3
foo N -> N + 1

Figure 27. Declarations are visible to the entire sequence containing them

3.1.2 Data declaration
The data prefix declares tree structures that need not be rewritten further. For instance,
Figure 28 declares that 1,3,4 should not be evaluated further, because it is made of in�x , trees
which are declared as data.

data a,b

Figure 28. Declaring a comma-separated list

The tree following a data declaration is a pattern, with constant and variable symbols like
for rewrite declarations. Data declarations only limit the rewrite of the tree speci�ed by the pat-
tern, but not the evaluation of pattern variables. In other words, pattern variables are evaluated
normally, as speci�ed in Section 3.3.

For instance, in Figure 29, the names x and y are variable, but the name complex is constant
because it is a pre�x. Using integer addition as de�ned in normal ELFE, complex(3+4, 5+6)
will evaluate as complex(7,11) but no further9.

data complex(x:integer,y:integer)

Figure 29. Declaring a complex data type

The declaration in Figure 29 can be interpreted as declaring a complex data type. There is,
however, a better way to describe data types in ELFE, which is detailed in Section 3.4.2.

The word self can be used to build data forms: data X is equivalent to X->self.

3.1.3 Type declaration
An type declaration is an in�x colon : operator in a rewrite or data pattern with a name on the
left and a type on the right. It indicates that the named parameter on the left has the type indi-
cated on the right. A return type declaration is an in�x as in a rewrite pattern with a pattern
on the left and a type on the right. It speci�es the value that will be returned by the implemen-
tation of the rewrite. Section 3.4 explains how types are de�ned.

8. In functional programming, these are often called lambda functions.
9. Evaluation is caused by the need to check the parameter types, i.e. verify that 3+4 is actually an integer.

16 Section 3

Figure 30 shows examples of type declarations. To match the pattern for polynom, the argu-
ments corresponding to parameters X and Z must be real, whereas the argument corresponding
to parameter N must be integer. The value returned by polynom will belong to real.

polynom X:real, Z:real, N:integer as real -> (X-Z)^N

Figure 30. Simple type declarations
The type declarations �lter which rewrites can be selected to evaluate a particular tree. This

enables overloading , i.e. the ability to have multiple functions or operators with a similar struc-
ture, but di�erent types for the parameters. Return type declarations, on the other hand, plays
no role in the selection of candidates10. If there is a return type declaration and the implementa-
tion does not actually return the declared return type, a type error expression of the form
type_error ExpectedType, ActualValue will attempt to correct the problem.

A type declaration can also be placed on the left of an assignment, see Section 3.1.4.

3.1.4 Assignment

The assignment operator := binds the reference on its left to the value of the tree on its right.
The tree on the right is evaluated prior to the assignment.

An assignment is valid even if the reference on the left of := had not previously been bound.
In that case, it creates a new binding in the current context. This is shown in Figure 6.15.

// Assigns to locally created X
assigns_to_local -> X := 1

Figure 31. Creating a new binding

On the other hand, if there is an existing binding, the assignment replaces the corresponding
bound value. This is shown in Figure 6.15:

// Assigns to global X defined below
assigns_to_global -> X := 1
X -> 0

Figure 32. Assignment to existing binding

Warning 1. In the current state of the standard implementation, assigning to an existing
rewrite must respect the type and overwrites the value in place. For example, if there is a decla-
ration like X->0, you may assign X:=1 and then X will be replaced with 1. But you will not be
able to assign X:="Hello". Furthermore, it is currently only possible to assign scalar types, i.e.
integer, real and text values. You cannot assign an arbitrary tree to a rewrite.

Local variables If the left side of an assignment is a type declaration, that assignment creates
a new binding in the local scope, as illustrated in Figure 6.15. That binding has a return type
declaration associated with it, so that later assignments to that same name will only succeed if
the type of the assigned value matches the previously declared type. This is shown in
Figure 6.15:

// Global X
X := 0

// Assign to local X
assigns_new -> X:integer := 1

Figure 33. Assigning to new local variable

Warning 2. Assigning to a new local may not work in the current implementation.

Assigning to references If the left side of an assignment is a reference, then the assignment
will apply to the referred value, as shown in Figure 34. This may either modify the referred
value if a binding already exists, or create a new binding in the context being referred to if no
binding exists.

10. Ada is one of the few programming languages that have overloading based on return types.

Language semantics 17

Data ->
0 -> 3
1 -> 2

Data.0 := 4 // replaces 3
Data.2 := 5 // Creates new binding 2->5 in Data

Figure 34. Assignment to references

An assignment can also assign to the following special references (see Section 4.1.9):

� left X, right X when X is an in�x, pre�x or post�x

� child X when X is a block

� symbol X when X is a name or in�x and the assigned value is a text

� opening X and closing X when X is a block or text and the assigned value is a text

Warning 3. Assignment to references, and in particular to portions of a tree, is mostly broken
and does not work in the current implementation, whether standard or optimized.

Assigning to parameters Assigning to a reference is particularly useful for parameters. In
some cases, parameters may be bound without being evaluated (see Section 3.3.3). This means
that the parameter is bound to a reference. In that case, assigning to the parameter will assign
to the reference, making it possible to implement assignment-like operations, as illustrated in
Figure 35.

A : integer := 5
A+=3

// Effectively assign to A
X+=Y -> X:=X+Y

Figure 35. Assigning to parameter

In that example, the context for evaluating the implementation X:=X+Y will contain a
binding for X in the form X->(A->5).A, where (A->5) is the original execution context. The
expression (A->5).A means that we evaluate A in the context that existed at the point where
expression A+=3 was evaluated. Therefore, assigning to X will affect the existing binding,,
resulting in the updated binding A->8 in the original context.

Assignments as expressions Using an assignment in an expression is equivalent to using the
value bound to the variable after the assignment. For instance, sin(x:=f(0)) is equivalent to
x:=f(0) followed by sin(x).

3.1.5 Guards

The in�x when operator in a rewrite or data pattern introduces a guard , i.e. a boolean condition
that must be true for the pattern to apply.

Figure 36 shows an improved de�nition of the factorial function which only applies for non-
negative values. This set of rewrites is ignored for a negative integer value.

0! -> 1
N! when N > 0 -> N * (N-1)!

Figure 36. Guard limit the validity of operations

A form where the guard cannot be evaluated or evaluates to anything but the value true is
not selected. For example, if we try to evaluate 'ABC'! the condition N>0 is equivalent to
'ABC'>0, which cannot be evaluated unless you added specific declarations. Therefore, the
rewrite for N! does not apply.

Warning 4. Guards are only implemented in optimized mode, which is not fully functional yet.

18 Section 3

3.1.6 Sequences

The infix line-break NEWLINE and semi-colon ; operators are used to introduce a sequence
between statements. They ensure that the left node is evaluated entirely before the evaluation of
the right node begins.

Figure 37 for instance guarantees that the code will �rst write "A", then write "B", then
write the result of the sum f(100)+f(200). However, the implementation is entirely free to
compute f(100) and f(200) in any order, including in parallel.

write "A"; write "B"
write f(100)+f(200)

Figure 37. Code writing A, then B, then f(100)+f(200)

Items in a sequence can be declarations or statements. Declarations include rewrite declara-
tions, data declarations, type declarations and assignments to a type declaration. All other
items in a sequence are statements.

3.1.7 Index operators

The notation A[B] and A.B are used as index operators, i.e. to refer to individual items in a col-
lection. The A[B] notation is intended to represent array indexing operations, whereas the A.B
notation is intended to represent �eld indexing operations.

For example, consider the declarations in Figure 38.
MyData ->

Name -> "Name of my data"
Value -> 3.45
1 -> "First"
2 -> "Second"
3 -> "Third"

Figure 38. Structured data
In that case, the expression MyData.Name results in the value "Name of my data". The

expression MyData[1] results in the value "First".
The two index operators di�er when their right operand is a name. The notation A.B evalu-

ates B in the context of A, whereas A[B] �rst evaluates B in the current context, and then applies
A to it (it is actually nothing more than a regular tree rewrite). Therefore, the notation
MyData.Value returns the value 3.45, whereas the value of MyData[Value] will evaluate Value
in the current context, and then apply MyData to the result. For example, if we had Value->3 in
the current context, then MyData[Value] would evaluate to "Third".

Warning 5. Index operators are only partially implemented. They work for simple examples,
but may fail for more complex use cases. In particular, it is not currently possible to update a
context by writing to an indexed value.

Comparison with C Users familiar with languages such as C may be somewhat disconcerted
by ELFE's index operators. The following points are critical for properly understanding them:

� Arrays, structures and functions are all represented the same way. The entity called
MyData can be interpreted as an array in MyData[3], as a structure in MyData.Name, or
as a function if one writes MyData 3. In reality, there is no di�erence between MyData[3]
and MyData 3: the former simply passes a block as an argument, i.e. it is exactly equiva-
lent to MyData(3), MyData{3}. Writing MyData[3] is only a way to document an intent
to use MyData as an array, but does not change the implementation.

� Data structures can be extended on the �y. For example, it is permitted to assign some-
thing to a non-existent binding in MyData, e.g. by writing MyData[4]:=3. The ability to
add ��elds� to a data structure on the �y makes it easier to extend existing code.

� Data structures can include other kinds of rewrites, for example �functions�, enabling
object-oriented data structures. This is demonstrated in Section 5.6.

� Since the notation A.B simply evaluates B in the context of A, the value of MyData.4 is...
4: there is no rewrite for 4 in MyData, therefore it evaluates a itself.

Language semantics 19

3.1.8 C interface
A C interface is is a rewrite where the implementation is a pre�x of two names, the �rst one
being C and the second one being the name of a C function. A C interface can also be speci�ed
using a special extern syntax. The name of the C function can also be speci�ed as text if it
does not obey ELFE naming rules, e.g. to interface to a function named _foobar_.

Figure 39 shows two ways of making the sin function of the C standard library available to
an ELFE program. The �rst one uses an ELFE-style rewrite, whereas the second one uses a C-
style syntax:

sin X:real as real -> C sin
extern double sin(double);

Figure 39. Creating an interface for a C function

The C-like syntax used for extern declaration is de�ned by the �le C.syntax, and applies
for anything between delimiters extern and ; as indicated in the elfe.syntax file. While
extremely simplistic relative to the real C syntax, it is su�cient to import most functions.

Table 1 shows which types can be used in a C interface and what C type they map to:
ELFE type C type
integer int
real double
text const char *
tree Tree *
infix Infix *
prefix Prefix *
postfix Postfix *
block Block *
name Name *

boolean bool

Table 1. Type correspondances in a C interface

Warning 6. The C interface syntax is only available in optimized mode.

3.1.9 Machine Interface
A machine interface is a rewrite where the implementation is a pre�x of two names, the �rst
one being opcode. Figure 40 shows how a speci�c tree rewrite can be connected to the genera-
tion of machine-level opcodes:

X:integer+Y:integer as integer -> opcode Add

Figure 40. Generating machine code using opcode declarations

Machine-level opcodes are provided by the LLVM library (http://llvm.org). Opcodes avail-
able to ELFE programs are described in Section 6.14.

Warning 7. The machine-level interface is only available in optimized mode.

3.2 Binding References to Values
A rewrite declaration of the form Pattern->Implementation is said to bind its pattern to its
implementation. A sequence of rewrite declarations is called a context . For example, the block
{x->3;y->4} is a context that binds x to 3 and y to 4.

Warning 8. The idea of formalizing the context and making it available to programs was only
formalized after the standard and optimized mode were implemented. It is not currently
working, but should be implemented in a future release. However, many notions described in
this section apply internally to the existing implementations, i.e. the context order is substan-
tially similar even if it is not made visible to programs in the way being described here.

3.2.1 Context Order
A context may contain multiple rewrites that hide one another.

20 Section 3

For example, in the context {x->0;x->1}, the name x is bound twice. The evaluation of x in
that context will return 0 because rewrites are tested in order. In other words, the declaration
x->0 shadows the declaration x->1 in that context.

For the purpose of �nding the �rst match, a context is traversed depth �rst in left-to-right
order, which is called context order .

3.2.2 Scoping

The left child of a context is called the local scope. The right child of a context is the enclosing
context. All other left children in the sequence are the local scopes of expressions currently
being evaluated. The �rst one being the enclosing scope (i.e. the local scope of the enclosing
context) and the last one being the global scope.

This ensures that local declarations hide declarations from the surrounding context, since
they are on the left of the right child, while allowing local declarations in the left child of the
context to be kept in program order, so that the later ones are shadowed by the earlier ones.

The child at the far right of a context is a catch-all rewrite intended to specify what happens
when evaluating an unde�ned form.

3.2.3 Current context

Any evaluation in ELFE is performed in a context called the current context . The current con-
text is updated by the following operations:

1. Evaluating the implementation of a rewrite creates a scope binding all arguments to the
corresponding parameters, then a new context with that scope as its left child and the
old context as its right child. The implementation is then evaluated in the newly created
context.

2. Evaluating a sequence initializes a local context with all declarations in that sequence,
and creates a new current context with the newly created local context as its left child
and the old context as its right child. Statements in the sequence are then evaluated in
the newly created context.

3. Evaluating an assignment changes the implementation of an existing binding if there is
one in the current context, or otherwise creates a new binding in the local scope.

3.2.4 References

An expression that can be placed on the left of an assignment to identify a particular binding is
called a reference. A reference can be any pattern that would go on the left of a rewrite. In
addition, it can be an index operator:

� If A refers to a context, assigning to A.B will a�ect the binding of B in the context A, and
not the binding of A.B in the current context.

� If A refers to a context, assigning to A[B] (or, equivalently, to A{B}, A(B) or A B) will
a�ect the binding corresponding to B in the context of A, not the binding of A B in the
current context. The index B will be evaluated in the current context if required to match
patterns in A, as explained in Section 3.3.

� Special forms described in Section 4.1.9, such as left X refer to children of infix,
prefix, postfix or block trees. They can be used as a reference in an assignment, and
will modify the tree being referred to. This can be used to directly manipulate the pro-
gram structure.

3.3 Evaluation
Evaluation is the process through which a given tree is rewritten.

3.3.1 Standard evaluation

Except for special forms described later, the evaluation of ELFE trees is performed as follows:

1. The tree to evaluate, T, is matched against the available data and rewrite pattern. 3*4+5
will match A*B+C as well as A+B (since the outermost tree is an in�x + as in A+B).

Language semantics 21

2. Possible matches are tested in context order (de�ned in Section 3.2) against the tree to
evaluate. The �rst matching tree is selected. For example, in Figure 4, (N-1)! will be
matched against the rules 0! and N! in this order.

3. Nodes in each candidate pattern P are compared to the tree T as follows:

� Constant symbols or names in P are compared to the corresponding element in T
and must match exactly. For example, the + symbol in pattern A+B will match the
plus + symbol in expression 3*4+5 but not the minus - symbol in 3-5.

� Variables names in P that are not bound to any value and are not part of a type
declaration are bound to the corresponding fragment of the tree in T. For example,
for the expression 3!, the variable N in Figure 4 will be bound to 3.

� Variable names in P that are bound to a value are compared to the corresponding
tree fragment in T after evaluation. For instance, if true is bound at the point of
the declaration in Figure 25, the test if A<3 then X else Y requires the evalua-
tion of the expression A<3, and the result will be compared against true.

� This rule applies even if the binding occured in the same pattern. For example,
the pattern A+A will match 3+3 but not 3+4, because A is �rst bound to 3 and then
cannot match 4. The pattern A+A will also match (3-1)+(4-2): although A may
first be bound to the unevaluated value 3-1, verifying if the second A matches
requires evaluating both A and the test value.

� Type declarations in P match if the result of evaluating the corresponding frag-
ment in T has the declared type, as de�ned in Section 3.4. In that case, the vari-
able being declared is bound to the evaluated value.

� Constant values (integer, real and text) in P are compared to the corresponding
fragment of T after evaluation. For example, in Figure 4, when the expression (N-
1)! is compared against 0!, the expression (N-1) is evaluated in order to be com-
pared to 0.

� In�x, pre�x and post�x nodes in P are compared to the matching node in T by
comparing their children in depth-�rst, left to right order.

The comparison process, called pattern matching , may cause fragments of the tree to be
evaluated. Each fragment is evaluated at most once for the process of evaluating the tree
T. Once the fragment has been evaluated, the evaluated value will be memoized and used
in any subsequent comparison or variable binding. For example, when computing F(3)!,
the evaluation of F(3) is required in order to compare to 0!, guaranteeing that N in N!
will be bound to the evaluated value if F(3) is not equal to 0.

4. If there is no match found between any pattern P and the tree to evaluate T:

� Integer, real and text terminals evaluates as themselves.

� A block evaluates as the result of evaluating its child.

� If the tree is a pre�x with the left being a name containing error, then the pro-
gram immediatly aborts and shows the o�ending tree. This case corresponds to an
unhandled error.

� For a pre�x node or post�x tree, the operator child (i.e. the left child for pre�x
and the right child for post�x) is evaluated, and if the result is di�erent from the
original operator child, evaluation is attempted again after replacing the original
operator child with its evaluated version.

� In any other case, the tree is pre�xed with evaluation_error and the result is
evaluated. For example, $foo will be transformed into evaluation_error $foo.
A pre�x rewrite for evaluation_error is supposed to handle such errors.

5. If a match is found, variables in the �rst matching pattern (called parameters) are bound
to the corresponding fragments of the tree to evaluate (called arguments).

� If an argument was evaluated (including as required for comparison with an earlier
pattern), then the corresponding parameter is bound with the evaluated version.

22 Section 3

� If the argument was not evaluated, the corresponding parameter is bound with the
tree fragment in context, as explained in Section 3.2. In line with the terminology
used in functional languages, this context-including binding is called a closure.

6. Once all bindings have been performed, the implementation corresponding to the pattern
in the previous step is itself evaluated. The result of the evaluation of the original form is
the result of evaluating the implementation in the new context created by adding to the
original context the bindings of parameters to their arguments. For a data form, the
result of evaluation is the pattern after replacing parameters with the corresponding
arguments.

3.3.2 Special forms
Some forms have a special meaning and are evaluated specially:

1. A terminal node (integer, real, type, name) evaluates as itself, unless there is an explicit
rewrite rule for it11.

2. A block evaluate as the result of evaluating its child.

3. A rewrite rule evaluates as itself.

4. A data declaration evaluates as itself

5. An assignment binds the variable and evaluates as the named variable after assignment

6. Evaluating a sequence creates a new local context with all declarations in the sequence,
then evaluates all its statements in order in that new local context. The result of evalua-
tion is the result of the last statement, if there is one, or the newly created context if the
sequence only contains declarations.

7. If C is a context and E is an expression, evaluating C E is equivalent to evaluating E in the
current context, then evaluating the result in the context of C. For example, (0->3)(1-1)
will evaluate 1-1, resulting in 0, then evaluate the result in the context 0->3, resulting in
the value 3.

8. If C is a context and E is an expression, evaluating C.E is equivalent to evaluating E in the
context of C. For example, (foo->1;bar->2).bar will return 2.

3.3.3 Lazy evaluation
When an argument is bound to a parameter, it is associated to a context which allows correct
evaluation at a later time, but the argument is in general not evaluated immediately. Instead, it
is only evaluated when evaluation becomes necessary for the program to execute correctly. This
technique is called lazy evaluation. It is intended to minimize unnecessary evaluations.

Evaluation of an argument before binding it to its parameter occurs in the following cases,
collectively called demand-based evaluation :

1. The argument is compared to a constant value or bound name, see Section 3.3.1, and the
static value of the tree is not sufficient to perform the comparison. For example, in
Figure 41, the expression 4+X requires evaluation of X for comparison with 4 to check if it
matches A+A; the expression B+B can be statically bound to the form A+A without
requiring evaluation of B; �nally, in B+C, both B and C need to be evaluated to compare if
they are equal and if the form A+A matches.

A+A -> 2*A
4+X // X evaluated
B+B // B not evaluated
B+C // B and C evaluated

Figure 41. Evaluation for comparison

2. The argument is tested against a parameter with a type declaration, and the static type
of the tree is not su�cient to guarantee a match. For example, in Figure 42, the expres-
sion Z+1 can statically be found to match the form X+Y, so Z needn't be evaluated. On
the other hand, in 1+Z, it is necessary to evaluate Z to type-check it against integer.

11. There are several use cases for allowing rewrite rules for integer, real or text constants, notably to imple-
ment data maps such as (1->0; 0->1), also known as associative arrays.

Language semantics 23

X:tree + Y:integer -> ...
Z + 1 // Z not evaluated
1 + Z // Z evaluated

Figure 42. Evaluation for type comparison

3. A speci�c case of the above scenario is the left side of any index operator. In A.B or
A[B], the value A needs to be evaluated to verify if it contains B.

When lazy evaluation happens, the expression being bound is a closure as explained in Sec-
tion 3.3.1, i.e. it will be an expression of the form C.E where C is the original evaluation context
and E is the original expression to evaluate.

Warning 9. Lazy evaluation was formalized after the compilers were implemented, and is not
entirely consistent in the current implementations. This should be �xed in future versions.

3.3.4 Explicit evaluation

Expressions are also evaluated in the following cases, collectively called explicit evaluation:

1. An expression on the left or right of a sequence is evaluated. For example, in A;B, the
names A and B will be evaluated.

2. The pre�x do forces evaluation of its argument. For example, do X will force the evalua-
tion of X.

3. The program itself is evaluated. Most useful programs are sequences.

The explicit evaluation of a name does not change the value bound to that name in the current
context. For example, if the current context contains A->write "Hello", each explicit evalua-
tion of A will cause the message Hello to be written.

3.3.5 Memoization

Whenever a parameter is evaluated, the evaluated result may be used for all subsequent
demand-based evaluations of the same tree, a process called memoization. What is memoized is
associated with the original tree.

Memoization does not happen for explicit evaluations. This is illustrated with the example
in Figure 43:

foo X ->
X
if X then writeln "X is true"
if do X then writeln "X is true"
X

bar ->
writeln "bar evaluated"
true

foo bar

Figure 43. Explicit vs. lazy evaluation

In Figure 43, evaluation happens as follows:

1. The expression foo bar is evaluated explicitly, being part of a sequence. This matches
the rewrite for foo X on the �rst line.

2. The �rst reference to X in the implementation is evaluated explicitly. This causes the
message bar evaluated to be written to the console.

3. The second reference to X is demand-based, but since X has already been evaluated, the
result true is used directly. The message X is true is emitted on the console, but the mes-
sage bar evaluated is not.

4. The third reference to X is an argument to do, so it is evaluated again, which writes the
message bar evaluated on the console.

24 Section 3

5. The last reference to X is another explicit evaluation, so the message bar evaluated is
written on the console again.

The purpose of these rules is to allow the programmer to pass code to be evaluated as an argu-
ment, while at the same time minimizing the number of repeated evaluations when a parameter
is used for its value. In explicit evaluation, the value of the parameter is not used, making it
clear that what matters is the e�ect of evaluation itself. In demand-based evaluation, it is on
the contrary assumed that what matters is the result of the evaluation, not the process of evalu-
ating it. It is always possible to force evaluation explicitly using do.

Warning 10. Like lazy evaluation, memoization is not fully consistent in the current implemen-
tations.

3.4 Types
Types are expressions that appear on the right of the colon operator : in type declarations. In
ELFE, a type identi�es the shape of a tree. A value is said to belong to a type if it matches the
shape de�ned by the type. A value may belong to multiple types.

Warning 11. Like contexts, the type system was largely redesigned based on experience with
the �rst implementations of the language. As a result, the current implementations implement a
very weak type system compared to what is being described in this section. At this point, user-
de�ned types do not work as descried in either the standard or optimized implementation. This
section de�nes the future implementation.

3.4.1 Prede�ned types

The following types are prede�ned:

� integer matches integer values

� real matches real values

� text matches text values

� symbol matches names and operator symbols

� name matches names only

� operator matches operator symbols only

� infix matches in�x nodes

� prefix matches pre�x nodes

� postfix matches post�x nodes

� block matches block nodes

� tree matches any abstract syntax tree, i.e. any representable ELFE value

� boolean matches the names true and false.

3.4.2 Type de�nition

A type de�nition for type T is a special form of tree rewrite declaration where the pattern has
the form type X. A type de�nition declares a type name, and the pattern that the type must
match. For example, Figure 44 declares a type named complex requiring two real numbers
called re and im, and another type named ifte that contains three arbitrary trees called Cond,
TrueC and FalseC.

complex -> type (re:real, im:real)
ifte -> type {if Cond then TrueC else FalseC}

Figure 44. Simple type declaration

The outermost block of a type pattern, if it exists, is not part of the type pattern. To create
a type matching a specific block shape, two nested bocks are required, as illustrated with
paren_block_type in Figure 45:

Language semantics 25

paren_block_type -> type((BlockChild))

Figure 45. Simple type declaration

Note that type de�nitions and type declarations should not be confused. A type de�nition
defines a type and has the form Name -> type TypePattern , whereas a type declaration
declares the type of an entity and has the form Name:Type. The type de�ned by a type de�ni-
tion can be used on the right of a type declaration. For example, Figure 46 shows how to use
the complex type de�ned in Figure 44 in parameters.

Z1:complex+Z2:complex -> (Z1.re+Z2.re, Z1.im+Z2.im)

Figure 46. Using the complex type

Parameters of types such as complex are bound to contexts with declarations for the indi-
vidual variables of the pattern of the type. For example, a complex like Z1 in Figure 46 contains
a rewrite for re and a rewrite for im. Figure 47 possible bindings when using the complex addi-
tion operator defined in Figure 46. The standard index notation described in Section 3.1.7
applies, e.g. in Z1.re, and these bindings can be assigned to.

// Expression being evaluated
(3.4, 5.2)+(0.4, 2.22)

// Possible resulting bindings
// in the implementation of +
Z1 ->

re->3.4
im->5.2
re, im

Z2 ->
re->0.4
im->2.22
re, im

Figure 47. Binding for a complex parameter

Figure 48 shows two ways to make type A equivalent to type B:
A -> B
A -> type X:B

Figure 48. Making type A equivalent to type B

3.4.3 Normal form for a type

By default, the name of a type is not part of the pattern being recognized. It is often recom-
mended to make data types easier to identify by making the pattern more speci�c, for instance
by including the type name in the pattern itself, as shown in Figure 49:

complex -> type complex(re:real, im:real)

Figure 49. Named patterns for complex

In general, multiple notations for a same type can coexist. In that case, it is necessary to
define a form for trees that the other possible forms will reduce to. This form is called the
normal form . This is illustrated in Figure 50, where the normal form is complex(re;im) and
the other notations are rewritten to this normal form for convenience.

// Normal form for the complex type
complex -> type complex(re:real, im:real)

// Other possible notations that reduce to the normal form
i -> complex(0,1)
A:real + i*B:real -> complex(A,B)
A:real + B:real*i -> complex(A,B)

Figure 50. Creating a normal form for the complex type

26 Section 3

3.4.4 Properties

Properties are types that match a number of trees, based not just on the shape of the tree, but
on symbols bound in that tree. For instance, when you need a color type representing red,
green and blue components, you care about the value of the components, but not the order in
which they appear.

A properties de�nition is a rewrite declaration like the one shown in Figure 51 where:

1. The implementation is a pre�x with the name properties followed by a block.

2. The block contains a sequence of type declarations Name:Type or assignments to type
declarations Name:Type:=DefaultValue, each such statement being called a property .

3. The block optionally contains one or more inherit pre�x (see Section 3.4.5)

color -> properties
red : real
green : real
blue : real
alpha : real := 1.0

Figure 51. Properties declaration

Properties parameters match any block for which all the properties are de�ned. Properties
are de�ned either if they exist in the argument's context, or if they are explicitly set in the block
argument, or if a default value was assigned to the property in the properties declaration. An
individual property can be set using an assignment or by using the property name as a pre�x.

For example, Figure 52 shows how the color type de�ned in Figure 51 can be used in a
parameter declaration, and how a color argument can be passed.

write C:color ->
write "R", C.red
write "G", C.green
write "B", C.blue
write "A", C.alpha

write_color { red 0.5; green 0.2; blue 0.6 }

Figure 52. Color properties
Properties parameters are contexts containing local declarations called getters and setters for

each individual property:

� The setter is a pre�x taking an argument of the property's type, and setting the prop-
erty's value to its argument.

� The getter returns the value of the property in the argument's context (which may be
actually set in the argument's enclosing contexts), or the default value if the property is
not bound in the argument's context.

This makes it possible to set default value in the caller's context, which will be injected in the
argument, as illustrated in Figure 53, where the expression C.red in write_color will evaluate
to 0.5, and the argument C.alpha will evaluate to 1.0 as speci�ed by the default value:

red := 0.5
write_color (blue 0.6; green 0.2)

Figure 53. Setting default arguments from the current context

It is su�cient for the block argument to de�ne all required properties. The block argument
may also contain more code than just the references to the setters, as illustrated in Figure 54:

write_color
X:real := 0.444 * sin time
if X < 0 then X := 1.0+X
red X
green X^2
blue X^3

Figure 54. Additional code in properties

Language semantics 27

3.4.5 Data inheritance

Properties declarations may inherit data from one or more other types by using one or more
inherit pre�xes in the properties declaration, as illustrated in Figure 55, where the type rgb
contains three properties called red, green and blue, and the type rgba additionally contains
an alpha property:

rgb -> properties
red : real
green : real
blue : real

rgba -> properties
inherit rgb
alpha : real

Figure 55. Data inheritance

Only declarations are inherited in this manner. The resulting types are not compatible,
although they can be made compatible using automatic type conversions (see Section 3.4.7).

3.4.6 Explicit type check

Internally, a type is any context where a contains pre�x can be evaluated. In such a context,
the expression contains X is called a type check for the type and for value X. A type check
must return a boolean value to indicate if the value X belongs to the given type.

Type checks can be declared explicitly to create types identifying arbitrary forms of trees
that would be otherwise di�cult to specify. This is illustrated in Figure 56 where we de�ne an
odd type that contains only odd integers and the text "Odd". We could similarly add a type
check to the de�nition of rgb in Figure 55 to make sure that red, green and blue are between
0.0 and 1.0.

odd ->
contains X:integer -> X mod 2 = 1
contains "Odd" -> true
contains X -> false

Figure 56. De�ning a type identifying an arbitrary AST shape

The type check for a type can be invoked explicitly using the in�x contains (with the type
on the left) or is_a (with the type on the right). This is shown in Figure 57. The �rst type
check odd contains 3 should return true, since 3 belongs to the odd type. The second type
check should return false since rgb expects the property blue to be set.

if odd contains 3 then pass else fail
if (red 1; green 1) is_a rgb then fail else pass

Figure 57. Explicit type check

3.4.7 Explicit and automatic type conversions

Pre�x forms with the same name as a type can be provided to make it easy to convert values to
type T. Such forms are called explicit type conversions . This is illustrated in Figure 58:

rgba C:rgb -> (red C.red; green C.green; blue C.blue; alpha 1.0)
rgb C:rgba -> (red C.red; green C.green; blue C.blue)

Figure 58. Explicit type conversion

An automatic type conversion is an in�x as form with a type on the right. If such a form
exists, it can be invoked to automatically convert a value to the type on the right of as. This is
illustrated in Figure 59.

X:integer as real -> real X
1+1.5 // 1.0+1.5 using conversion above

Figure 59. Automatic type conversion

28 Section 3

3.4.8 Parameterized types

Since type de�nitions are just regular rewrites, a type de�nition may contain a more complex
pattern on the left of the rewrite. This is illustrated in Figure 60, where we de�ne a one_modulo
N type that generalizes the odd type.

one_modulo N:integer ->
contains X:integer -> X mod N = 1
contains X -> false

show X:(one_modulo 1)

Figure 60. Parameterized type

It is also possible to de�ne tree forms that are neither name nor pre�x. Figure 61 shows how
we can use an in�x form with the .. operator to declare a range type.

Low:integer..High:integer ->
contains X:integer -> X>=Low and X<=High
contains X -> false

foo X:1..5 -> write X

Figure 61. Declaring a range type using an in�x form

3.4.9 Rewrite types

The in�x -> operator can be used in a type de�nition to identify speci�c forms of rewrites that
perform a particular kind of tree transformation. Figure 62 illustrates this usage to declare an
adder type that will only match rewrites declaring an in�x + node:

adder -> type {X+Y -> Z}

Figure 62. Declaration of a rewrite type

4 Standard ELFE library

The ELFE language is intentionally very simple, with a strong focus on how to extend it rather
than on built-in features. Most features that would be considered fundamental in other lan-
guages are implemented in the library in ELFE. Implementing basic amenities that way is an
important proof point to validate the initial design objective, extensibility of the language.

Warning 12. This describes the standard ELFE library for the core, text-only implementation
of ELFE found in the open-source implementation. Since there is no real di�erence between
built-in functions and library de�nitions, the ELFE language can be �embedded� in an applica-
tion that will provide a much richer vocabulary. In particular, users of Tao Presentations should
refer to the Tao Presentations on-line documentation for information about features speci�c to
this product, such as 3D graphics, regular expressions, networking, etc.

4.1 Built-in operations
A number of operations are de�ned by the core run-time of the language, and appear in the con-
text used to evaluate any ELFE program.

This section decsribes the minimum list of operations available in any ELFE program. Oper-
ator priorities are de�ned by the elfe.syntax �le in Figure 15. All operations listed in this sec-
tion may be implemented specially in the compiler, or using regular rewrite rules de�ned in a
particular �le called builtins.xl that is loaded by ELFE before evaluating any program, or a
combination of both.

4.1.1 Arithmetic

Arithmetic operators for integer and real values are listed in Table 2, where x and y denote
integer or real values. Arithmetic operators take arguments of the same type and return an
argument of the same type. In addition, the power operator ^ can take a �rst real argument
and an integer second argument.

Standard ELFE library 29

Form Description
x+y Addition
x-y Subtraction
x*y Multiplication
x/y Division

x rem y Remainder
x mod y Modulo

x^y Power
-x Negation
x% Percentage (x/100.0)
x! Factorial

Table 2. Arithmetic operations

4.1.2 Comparison
Comparison operators can take integer, real or text argument, both arguments being of the
same type, and return a boolean argument, which can be either true or false. Text is com-
pared using the lexicographic order12.

Form Description
x=y Equal
x<>y Not equal
x<y Less-than
x>y Greater than
x<=y Less or equal
x>=y Greater or equal

Table 3. Comparisons

4.1.3 Bitwise arithmetic
Bitwise operators operate on the binary representation of integer values, treating each bit indi-
vudally.

Form Description
x shl y Shift x left by y bits
x shr y Shift x right by y bits
x and y Bitwise and
x or y Bitwise or
x xor y Bitwise exclusive or
not x Bitwise complement

Table 4. Bitwise arithmetic operations

4.1.4 Boolean operations
Boolean operators operate on the names true and false.

Form Description
x=y Equal
x<>y Not equal

x and y Logical and
x or y Logical or
x xor y Logical exclusive or
not x Logical not

Table 5. Boolean operations

4.1.5 Mathematical functions
Mathematical functions operate on real numbers. The random function can also take two
integer arguments, in which case it returns an integer value.

12. There is currently no locale-dependent text comparison.

30 Section 4

Form Description
sqrt x Square root
sin x Sine
cos x Cosine
tan x Tangent
asin x Arc-sine
acos x Arc-cosine
atan x Arc-tangent

atan(y,x) Coordinates arc-tangent (atan2 in C)
exp x Exponential
expm1 x Exponential minus one
log x Natural logarithm
log2 x Base 2 logarithm
log10 x Base 10 logarithm
log1p x Log of one plus x

pi Numerical constant �
random A random value between 0 and 1

random x,y A random value between x and y

Table 6. Mathematical operations

4.1.6 Text functions

Text functions operate on text values.
Form Description
x&y Concatenation

text_length x Length of the text
text_range t, start, len Range of characters in t

t[n] Character at index n
t[n1..n2] Characters in range n1..n2

Table 7. Text operations

The �rst character in a text is numbered 0.

4.1.7 Conversions

Conversions operations transform data from one type to another.
Form Description

real x:integer Convert integer to real
real x:text Convert text to real

integer x:real Convert real to integer
integer x:text Convert text to real
text x:integer Convert integer to text
text x:real Convert real to text
text n:name Convert name to text
name t:text Convert text to name

Table 8. Conversions

A conversion from text that fails returns the value 0. Conversions to text always use the
format used for ELFE source code, using dot as a decimal separator: text 0.0 is "0.0".

4.1.8 Date and time

Date and time functions manipulates time. Time is expressed with an integer representing a
number of seconds since a time origin. Except for system_time which never takes an argument,
the functions can either take an explicit time represented as an integer as returned by
system_time, or apply to the current time in the current time zone.

Standard ELFE library 31

Form Description
hours Hours

minutes Minutes
seconds Seconds
year Year
month Month
day Day of the month

week_day Day of the week
year_day Day of the year

system_time Current time in seconds

Table 9. Date and time

4.1.9 Tree operations

Tree operations allow direct manipulation of abstract syntax trees.
Form Description

identity x Returns x
do x Forces explicit evaluation of x
x.y Evaluate y in context of x
self The input form in a rewrite implementation

left X, right X Left and right child for in�x, pre�x, post�x
child X Child of a block
symbol X Symbol for an in�x or name as text

opening X, closing X Opening and closing of text or blocks

Table 10. Tree operations

The prefix left, right, child, symbol, opening and closing can be assigned to, as
described in Section 3.1.4.

4.1.10 List operations, map, reduce and �lter

By convention, ELFE lists use comma-separated lists, such as 1,3,5,6, although similar opera-
tions can be built with any other data structure. The map, reduce and �lter operations act on
such lists. They also can take a range Low..High as input. An empty list is represented by the
name nil. Basic list operations are shown in Table 11:

Form Description
nil The empty list

head,tail A data form for lists
length L The length of list L
map F L Map function F to list L

reduce F L Combine list elements in a single value
filter F L Filter elements of a list
x with y Convenience notation for Map, Reduce or Filter
x..y Create a range of elements between x and y

head L or L.head Head of the list
tail L or L.tail Tail of the list (all but �rst element)

L1 & L2 Concatenation of lists

Table 11. List operations

The map operation builds a list by applying the �rst argument as a pre�x to each element of
the list in turn. For example, map foo (1,3,5) returns the list foo 1, foo 3, foo 5. Map
can be used with anonymous functions: map (x->x+1) (2,4,6) returns (2+1,4+1,6+1).

The reduce operation, sometimes called fold or accumulate in other functional languages,
combines elements of the list two by two using a binary operation, and returns a single result.
For example, reduce (x,y->x+y) (1,3,5) returns 1+3+5.

32 Section 4

The �lter operation takes a predicate (i.e. a function taking a single argument and returning
a boolean) and a list, and returns elements of the list for which the predicate returns true. For
example, filter (x->x<10) (1,12,17,2) returns (1,2).

The notation (X where Predicate X) with L corresponds to a filter operation on list L
with predicate Predicate. For example, (X where X<10) with (1,12,17,2) returns (1,2).

The notation (X,Y -> ...) with L corresponds to a reduce operation on list L. For
example, (X,Y -> X+Y) with (2,4,6) returns (2+1,4+1,6+1).

For other forms of F, the notation F with L corresponds to a map operation on list L. For
example, sin with (1,3,5) returns sin 1, sin 3, sin 5.

The notation x..y is called a range. A range of integer, real numbers or text can be used as
a type. A range of integers can also be used as a lazy enumeration of all elements as a comma-
separated list. In other words, 1..5 is a short-hand notation for 1,2,3,4,5.

4.2 Control structures
Control structures such as tests and loops are implemented in the ELFE standard library.

Warning 13. The control structures described below are not necessarily all implemented at all
optimization levels. Future implementations will add new control structures as soon as the com-
piler becomes smart enough to generate correct code for the de�nitions given in this section.

4.2.1 Tests

The de�ntion of the if-then-else statement in the library is as shown in Figure 63:

// Declaration of if-then-else
if true then TrueClause else FalseClause -> TrueClause
if false then TrueClause else FalseClause -> FalseClause

Figure 63. Library de�nition of if-then-else

This de�nition requires the value to be a boolean, i.e. true or false. The good function
shown in Figure 64 provides a behavior closer to what is seen in languages such as C, where the
value 0 is logically false and non-zero values are logically true.

good false -> false
good 0 -> false
good 0.0 -> false
good "" -> false
good nil -> false
good Other -> true

Figure 64. The good function

It is possible to add declarations of good for other data types. Such local declarations will
precede the declarations for good in scoping order, so that they override that �default� imple-
mentation of good shown above.

4.2.2 In�nite Loops

The ELFE standard library provides a number of loop constructs. Figure 4.2.3 shows an imple-
mentation for the simplest form of loop, the in�nite loop. The repeated evaluation of Body illus-
trates the importance of explicit evaluation (see Section 3.3.4). Note that such a recursive
implementation is only e�cient if tail recursion optimization works correctly (see Section 6.12).

loop Body ->
Body
loop Body

Figure 65. In�nite loop

Standard ELFE library 33

4.2.3 Conditional Loops (while and until loops)

Figure 66 shows an implementation for the while loop, which runs while a given condition is
true. Explicit evaluation is not required for Condition because it is evaluated only once in the
implementation of the while loop, preventing memoization of Condition (see Section 3.3.3).
The parameter Condition is not given a boolean type because we want the expression, not the
result of evaluating that expression.

while Condition loop Body ->
if Condition then

Body
while Condition loop Body

Figure 66. While loop

The until loop shown in Figure 4.2.4 is very similar to the while loop except that it stops
when the condition becomes true instead of false.

until Condition loop Body ->
if not Condition then

Body
until Condition loop Body

Figure 67. Until loop

4.2.4 Controlled Loops (for loops)

The for loop is the most complex kind of loop. It exists in multiple variants. The simplest one,
shown in Figure 68, iterates over a range of integer values. Notice that it creates a local Index
variable to ensure it doesn't modify Variable unless the loop is actually executed.

for Variable in Low:integer..High:integer loop Body ->
Index : integer := Low
while Index < High loop

Variable := Index
Body
Index := Index + 1

Figure 68. For loop on an integer range

The for loop shown in Figure 69 iterates on all elements of a container such as a list or a
range. It updates its Variable for each iteration with a new element in the container.

for Variable in Container loop Body ->
C : tree := Container
while good C loop

Variable := head C
Body
C := tail C

Figure 69. For loop on a container

There are several other kinds of for loops, corresponding to the patterns shown in Figure 70:

for Variable in Low:integer..High:integer step Step:integer
for Variable in Low:real..High:real
for Variable in Low:real..High:real step Step:real

Figure 70. Other kinds of for loop

It is not di�cult to create custom for loops to explore other data structures.

34 Section 4

Warning 14. The standard mode implements hard-coded for loops. The optimized mode is
not currently powerful enough to handle for loop de�nitions properly.

4.2.5 Excursions

4.2.6 Error handling

4.3 Library-de�ned types
A variety of types are de�ned in the library.

4.3.1 Range and range types

The notation low..high de�nes a range. A range can be used as a list by list operations, as
explained in Section 4.1.10, but also as a type. The range type low..high accepts all values
between low and high included. It is de�ned in a way substantially equivalent to Figure 71:

low..high ->
contains X -> X>=low and X<=high
self

Figure 71. Range and range type de�nition

Arithmetic operations are also de�ned on ranges of integer and real numbers, and operate
simultaneously on the low and high part of the range. When low and high are real, operations
are performed with different rounding for low and high, so as to implement proper interval
arithmetic.

Ranges of integer can also be interpreted as lists, with head and tail operations imple-
mented in a way substantially similar to Figure 72. Lazy evaluation ensures that very large
ranges can be processed e�ciently (see Section 5.7.7).

head low:integer..high:integer -> if low <= high then low else nil
tail low:integer..high:integer -> if low < high then low+1..high else nil

Figure 72. Ranges as lists

A test is required to deal with the corner case of empty lists.

Warning 15. The range type is not currently implemented, pending improvements in the type
system.

4.3.2 Union types

The notation A|B in types is a union type for A and B, i.e. a type that can accept any element of
types A or B. It is pre-de�ned in the standard library as in Figure 73:

A|B ->
contains X:A -> true
contains X:B -> true
contains X -> false

Figure 73. Union type de�nition

Union types facilitate the de�nition of functions that work correctly on a multiplicity of data
types, but not necessarily all of them, as shown in Figure 74:

number -> type X:(integer|real)
succ X:number -> X + 1
pred X:(integer|real) -> X-1

Figure 74. Using union types

Standard ELFE library 35

Warning 16. Union types are not implementede yet, pending improvements in the type
system.

4.3.3 Enumeration types

An enumeration type accepts names in a prede�ned set. The notation enumeration(A, B, C)
corresponds to an enumeration accepting the names A, B, C... This notation is pre-de�ned in the
standard library as in Figure 75:

enumeration(A:name,Rest) ->
contains X:name -> text X = text A or enumeration(Rest) contains X
contains X -> false

Figure 75. Enumeration type de�nition

Unlike in other languages, enumeration types are not distinct from one another and can
overlap. For example, the name do belongs to enumeration(do,undo,redo) as well as to
enumeration(do,re,mi,fa,sol,la,si) . Also, as this enumeration example demonstrates, enu-
merations can use names such as do that are also used by standard pre�x functions.

Warning 17. Enumeration types are not implemented yet.

4.3.4 A type matching type declarations

Type declarations in a type de�nition are used to declare actual types, so a type that matches
type declarations cannot be de�ned by a simple pattern. Figure 76 shows how the standard
library de�nes a type_declaration type using a type check.

type type_declaration ->
contains X:infix -> X.name = ":"
contains X -> false

Figure 76. Type matching a type declaration

Warning 18. This de�nition of type_declaration does not work yet, pending improvements
in the type system implementation.

4.4 Modules
ELFE modules make it possible to decompose a large ELFE program in smaller units.

4.4.1 Import statement

The import pre�x imports a source �le or a module, as shown in Figure 77:

import "file.xl"
import MyModule
import OtherModule 1.2
import MOD = LongMessage 1.3

Figure 77. Import statements examples

An import statement can be followed by a �le name or a module speci�cation:

� A �le name provides a system-dependent �le name for an ELFE source �le. By conven-
tion, ELFE source �le names end in .xl. In order to improve compatibility between sys-
tems, backslash characters \ in �le names are converted to slash characters / on Unix
systems, and slash characters in �le names are converted to backslash on Windows. Drive
speci�cations such as C: are not converted.

� A module can also be identi�ed by a name, optionally followed by a real number repre-
senting a minimum required version number. Modules source �les are located in a set of
directories de�ned by a module path , and contain special module declarations specifying
the module import name and the version number.

36 Section 4

� Finally, the module being imported can locally be given a short name with the syntax
import M=ModSpec. In that case, the contents of the module is only visible using the
index notation with either the short name M or the long module name.

Importing a module or �le has the following e�ects:

1. Any syntax statement in the imported module applies to the source code importing it.

2. A scope is created and populated with all declarations in the module.

3. Except if a short name is given, that scope is placed immediately to the right of the cur-
rent context. In other words, it potentially shadows previously imported modules, but
also is potentially shadowed by declarations in the current �le.

4. If the module is identi�ed by a name and not a �le name, a binding of that module name
to the newly created module scope, and another binding to the short name in case one
was provided.

Warning 19. In the current implementation, the import statement does not make the syntax
visible yet.

The rationale for these rules is to make di�erent usage scenarios equally convenient:

� If declarations in a module are going to be used extensively, using import Module makes
all declarations visible by default.

� If a local declaration Foo hides a declaration of Foo in the module, it is still possible to
refer to the module's declaration as Module.Foo.

� If it is undesirable to see declarations from the module, using import M=Module will pre-
vent the module from becoming visible, but will make it convenient to refer to entities
declared in the module using the short name, as in M.Foo.

4.4.2 Declaring a module

A module is identi�ed by a module description similar to Figure 78:

module_description
id "B1E18CF6-0E3E-4992-98AD-0FD998C9C9CB"
name "My Incredible Module"
description "This is an example of module"
import_name "MyModule"
author "John Doe"
website "http://www.taodyne.com"
url "git://git.taodyne.com/MyModule"
dependencies BaseLibrary 1.1, ELFE 0.9
version 1.0

Figure 78. Module de�nition

The module description contains information allowing the ELFE compiler to identify the
modules. Only the import_name is required for that purpose. It is however considered good
practice to provide the rest of the information, which can be used by various applications to
provide meaningful information to the user, or useful utilities such as module dependency man-
agement.

5 Example code

5.1 Minimum and maximum
The minumum and maximum can be de�ned as follows:

Example code 37

min x, y -> m:tree := min y; if m < x then m else x
min x -> x
max x, y -> m:tree := max y; if m > x then m else x
max x -> x

Figure 79. Computing a minimum and a maximum

The functions as de�ned will work with any number of arguments, as well as with lists of
items.

5.2 Complex numbers

5.3 Vector and Matrix computations

5.4 Linked lists with dynamic allocation

5.5 Input / Output

5.6 Object-Oriented Programming

5.6.1 Classes

5.6.2 Methods

5.6.3 Dynamic dispatch

5.6.4 Polymorphism

5.6.5 Inheritance

5.6.6 Multi-methods

5.6.7 Object prototypes

5.7 Functional-Programming

5.7.1 Map

5.7.2 Reduce

5.7.3 Filter

5.7.4 Functions as �rst-class objects

5.7.5 Anonymous functions (Lambda)

5.7.6 Y-Combinator

5.7.7 In�nite data structures

Since arguments are evaluated lazily, the evaluation of one fragment of the form does not imply
the evaluation of any other. This makes it possible to correctly evaluate in�nite data structures,
as illustrated in Figure 80.

38 Section 5

integers_above N:integer -> N, integers_above N+1
head X,Y -> X
tail X,Y -> Y

// This computes 7 without evaluating integers_above 8
head tail tail tail integers_above 4

Figure 80. Lazy evaluation of an in�nite list

6 Implementation notes

This section describes the implementation as published at http://xlr.sourceforge.net.

6.1 Lazy evaluation

6.2 Type inference

6.3 Built-in operations

6.4 Controlled compilation
A special form, compile, is used to tell the compiler how to compile its argument. This makes it
possible to implement special optimization for often-used forms.

compile {if Condition then TrueForm else FalseForm} ->
generate_if_then_else Condition, TrueForm, FalseForm

Figure 81. Controlled compilation

Controlled compilation depends on low-level compilation primitives provided by the LLVM
infrastructure13, and assumes a good understanding of LLVM basic operations. Table 12 shows
the correspondance between LLVM primitives and primitives that can be used during controlled
compilation.

ELFE Form LLVM Entity Description
llvm_value x Value * The machine value associated to tree x
llvm_type x Type * The type associated to tree x
llvm_struct x StructType * The structure type for signature x

llvm_function_type x FunctionType * The function type for signature x
llvm_function x Function * The machine function associated to x
llvm_global x GlobalValue * The global value identifying tree x
llvm_bb n BasicBlock * A basic block with name n
llvm_type

Table 12. LLVM operations

6.5 Tree representation
The tree representation is performed by the Tree class, with one subclass per node type:
Integer, Real, Text, Name, Infix, Prefix, Postfix and Block.

The Tree structure has template members GetInfo and SetInfo that make it possible to as-
sociate arbitrary data to a tree. Data is stored there using a class deriving from Info.

13. For details, refer to http://llvm.org.

Implementation notes 39

The rule of thumb is that Tree only contains members for data that is used in the evaluation
of any tree. Other data is stored using Info entries.

Currently, data that is directly associated to the Tree includes:

� The tag �eld stores the kind of the tree as well as its position in the source code.

� The info �eld is a linked list of Info entries.

6.6 Evaluation of trees
Trees are evaluated in a given context , representing the evaluation environment. The context
contains a lexical (static) and stack (dynamic) part.

1. The lexical context represents the declarations that precede the tree being evaluated in
the source code. It can be determined statically.

2. The dynamic context represents the declarations that were introduced as part of earlier
evaluation, i.e. in the �call stack�.

A context is represented by a tree holding the declarations, along with associated code.

6.7 Tree position
The position held in the tag �eld is character-precise. To save space, it counts the number of
characters since the begining of compilation in a single integer value.

The Positions class de�ned in scanner.h maps this count to the more practical �le-line-
column positioning. This process is relatively slow, but this is acceptable when emitting error
messages.

6.8 Actions on trees
Recursive operations on tree are performed by the Action class. This class implements virtual
functions for each tree type called DoInteger, DoReal, DoText and so on.

6.9 Symbols
The ELFE runtime environment maintains symbol tables which form a hierarchy. Each symbol
table has a (possibly NULL) parent, and contains two kinds of symbols: names and rewrites.

� Names are associated directly with a tree value. For example, X->0 will associate the
value 0 to name X.

� Rewrites are used for more complex tree rewrites, e.g. X+Y->add X,Y.

6.10 Evaluating trees
A tree is evaluated as follows:

1. Evaluation of a tree is performed by elfe_evaluate() in runtime.cpp.

2. This function checks the stack depth to report in�nite recursion.

3. If code is NULL, then the tree is compiled �rst.

4. Then, evaluation is performed by calling code with the tree as argument.

The signature for code is a function taking a Tree pointer and returning a Tree pointer.

6.11 Code generation for trees
Evaluation functions are functions with the signature shown in Figure 82:

Tree * (*eval_fn) (eval_fn eval, Tree *self)

Figure 82. Signature for rewrite code with two variables.

40 Section 6

Unfortunately, the signature in Figure 82 is not valid in C or C++, so we need a lot of
casting to achieve the desired e�ect.

In general, the code for a tree takes the tree as input, and returns the evaluated value.
However, there are a few important exceptions to this rule:

6.11.1 Right side of a rewrite

If the tree is on the right of a rewrite (i.e. the right of an in�x -> operator), then code will take
additional input trees as arguments. Speci�cally, there will be one additional parameter in the
code per variable in the rewrite rule pattern.

For example, if a rewrite is X+Y->foo X,Y, then the code �eld for foo X,Y will have X as its
second argument and Y as its third argument, as shown in Figure 82.

In that case, the input tree for the actual expression being rewritten remains passed as the
�rst argument, generally denoted as self.

6.11.2 Closures

If a tree is passed as a tree argument to a function, then it is encapsulated in a closure. The
intent is to capture the environment that the passed tree depends on. Therefore, the associated
code will take additional arguments representing all the captured values. For instance, a closure
for write X,Y that captures variables X and Y will have the signature shown in Figure 83:

Tree * (*code) (Tree *self, Tree *X, Tree *Y)

Figure 83. Signature for rewrite code with two variables.

At runtime, the closure is represented by a pre�x tree with the original tree on the left, and
the captured values cascading on the right. For consistency, the captured values are always on
the left of a Prefix tree. The rightmost child of the rightmost Prefix is set to an arbitrary,
unused value (speci�cally, false).

Closures are built by the function elfe_new_closure, which is generally invoked from gener-
ated code. Their code �eld is set to a function that reads all the arguments from the tree and
invokes the code with the additional arguments.

For example, do takes a tree argument. When evaluating do write X,Y, the tree given as
an argument to do depends on variable X and Y, which may not be visible in the body of do.
These variables are therefore captured in the closure. If its values of X and Y are 42 and
Universe, then do receives a closure for write X,Y with arguments 42 and Universe.

6.12 Tail recursion

6.13 Partial recompilation

6.14 Machine Interface

6.15 Machine Types and Normal Types

Implementation notes 41

Table of contents

1 Introduction . 1

1.1 Design objectives . 1
1.2 Keeping it simple . 2
1.3 Examples . 3
1.4 Concept programming . 4

From concept to code: a lossy conversion . 4
Pseudo-metrics . 4
In�uence on ELFE . 5

1.5 State of the implementation . 5

2 Syntax . 5

2.1 Spaces and indentation . 6
2.2 Comments and spaces . 6
2.3 Literals . 6

2.3.1 Integer constants . 6
2.3.2 Real constants . 7
2.3.3 Text literals . 8
2.3.4 Name and operator symbols . 42

2.4 Structured nodes . 9
2.4.1 In�x nodes . 9
2.4.2 Pre�x and post�x nodes . 9
2.4.3 Block nodes . 9

2.5 Parsing rules . 9
2.5.1 Precedence . 10
2.5.2 Associativity . 10
2.5.3 In�x versus Pre�x versus Post�x . 10
2.5.4 Expression versus statement . 11

2.6 Syntax con�guration . 11
Format of syntax con�guration . 11

3 Language semantics . 13

3.1 Tree rewrite operators . 13
3.1.1 Rewrite declarations . 15
3.1.2 Data declaration . 16
3.1.3 Type declaration . 16
3.1.4 Assignment . 16

Local variables . 17
Assigning to references . 17
Assigning to parameters . 17
Assignments as expressions . 17

3.1.5 Guards . 18
3.1.6 Sequences . 18
3.1.7 Index operators . 19

Comparison with C . 19
3.1.8 C interface . 19
3.1.9 Machine Interface . 20

3.2 Binding References to Values . 20
3.2.1 Context Order . 20
3.2.2 Scoping . 20

42 Section

3.2.3 Current context . 21
3.2.4 References . 21

3.3 Evaluation . 21
3.3.1 Standard evaluation . 21
3.3.2 Special forms . 22
3.3.3 Lazy evaluation . 22
3.3.4 Explicit evaluation . 23
3.3.5 Memoization . 23

3.4 Types . 24
3.4.1 Prede�ned types . 24
3.4.2 Type de�nition . 25
3.4.3 Normal form for a type . 26
3.4.4 Properties . 26
3.4.5 Data inheritance . 27
3.4.6 Explicit type check . 27
3.4.7 Explicit and automatic type conversions . 28
3.4.8 Parameterized types . 28
3.4.9 Rewrite types . 28

4 Standard ELFE library . 29

4.1 Built-in operations . 29
4.1.1 Arithmetic . 29
4.1.2 Comparison . 29
4.1.3 Bitwise arithmetic . 29
4.1.4 Boolean operations . 30
4.1.5 Mathematical functions . 30
4.1.6 Text functions . 30
4.1.7 Conversions . 30
4.1.8 Date and time . 31
4.1.9 Tree operations . 31
4.1.10 List operations, map, reduce and �lter . 32

4.2 Control structures . 32
4.2.1 Tests . 32
4.2.2 In�nite Loops . 33
4.2.3 Conditional Loops (while and until loops) . 33
4.2.4 Controlled Loops (for loops) . 33
4.2.5 Excursions . 34
4.2.6 Error handling . 34

4.3 Library-de�ned types . 34
4.3.1 Range and range types . 34
4.3.2 Union types . 35
4.3.3 Enumeration types . 35
4.3.4 A type matching type declarations . 35

4.4 Modules . 35
4.4.1 Import statement . 35
4.4.2 Declaring a module . 36

5 Example code . 37

5.1 Minimum and maximum . 37
5.2 Complex numbers . 37
5.3 Vector and Matrix computations . 37
5.4 Linked lists with dynamic allocation . 37
5.5 Input / Output . 37
5.6 Object-Oriented Programming . 37

5.6.1 Classes . 37
5.6.2 Methods . 37

Table of contents 43

5.6.3 Dynamic dispatch . 38
5.6.4 Polymorphism . 38
5.6.5 Inheritance . 38
5.6.6 Multi-methods . 38
5.6.7 Object prototypes . 38

5.7 Functional-Programming . 38
5.7.1 Map . 38
5.7.2 Reduce . 38
5.7.3 Filter . 38
5.7.4 Functions as �rst-class objects . 38
5.7.5 Anonymous functions (Lambda) . 38
5.7.6 Y-Combinator . 38
5.7.7 In�nite data structures . 38

6 Implementation notes . 38

6.1 Lazy evaluation . 38
6.2 Type inference . 38
6.3 Built-in operations . 38
6.4 Controlled compilation . 38
6.5 Tree representation . 39
6.6 Evaluation of trees . 39
6.7 Tree position . 39
6.8 Actions on trees . 39
6.9 Symbols . 39
6.10 Evaluating trees . 39
6.11 Code generation for trees . 39

6.11.1 Right side of a rewrite . 39
6.11.2 Closures . 40

6.12 Tail recursion . 40
6.13 Partial recompilation . 40
6.14 Machine Interface . 40
6.15 Machine Types and Normal Types . 40

Index . 42

List of �gures . 45

List of tables . 48

44 Section

Index

:= . 16
abstract syntax tree 2, 5
anonymous function 15
argument . 15
arithmetic . 29

bitwise . 29
array

as function 19
index . 19

array index . 19
art . 5
assignment 14, 16, 21

in expression 17
to parameter 17
to type declaration 16, 17

associativity 10, 10
AST

manipulations 31
AST (abstract syntax tree) 2
automatic type conversion 27, 28
bandwidth . 5
binding . 14, 20

in assignment 17
local scope 17
of module names 36
parameters 21
with return type declaration 17

bindings
in type de�nitions 25

bitwise arithmetic 29
block . 9, 9, 25
block delimiters 9, 13
block type . 2
boolean . 25, 30
built-in operations 29
builtins.xl . 29
C interface . 19
C symbols . 13
catch-all rewrite 21
child . 32
child node . 9
closing . 32
closure . 22
code space . 4
comments . 6
comparisons . 29
concept . 4
concept space . 4
constant . 15
constant symbols 15
contains . 28
context . 15, 20

current . 21
enclosing . 20
parameter context 22
passed with arguments 21

context order 20, 21
control characters 8
conversion

from number to text 31

from text to number 31
conversions . 30
C.syntax . 19

connexion to elfe.syntax 19
C.syntax �le . 13
current context 21
data declaration 16
data declarations 14
data inheritance 27
date and time 31
declaration . 18

of data . 16
of rewrites 15
of types . 16

default precedence 12
default pre�x (precedence) 10
default value . 27
de�nition

of properties 27
of types . 25

domain-speci�c language 2
dot

as decimal separator 7
as index operator 19

double quote . 8
DSL (domain-speci�c language) 3
evaluation 13, 21

data declaration arguments 16
demand-based 23
explicit . 23
explicit vs. lazy 24
forcing explicit evaluation 24
in assignment 17
lazy . 23
mismatch . 21
of arguments 21
order . 18
special forms 22
standard case 21

evaluation order 15
execution (of programs) 13
explicit evaluation 23
explicit type check 27
explicit type conversion 28
exponent (for real constants) 7
expression

allowed on left of assignment 17
assignment as expression 18

expression (as opposed to statement) 11
expression vs. statement 9, 10, 11
Extensible language and runtime 1
extern syntax . 19
external syntax �le 13
�eld index . 19
�lter . 4
�lter operation 32
function . 9
function precedence 9, 10, 13
functional programming 3, 4

Index 45

getter . 27
good (function) 33
guard . 18
guard (in a rewrite declaration) 14
hash sign (as a radix delimiter) 7
if-then-else

library de�nition 32
statement 4, 15
type . 25

implementation 14
import . 36

with a short name 36
indentation 6, 11, 13
indentation (in long text) 8
index

array . 19
�eld . 19
for user-de�ned types 25

index operator 15, 19, 21
in�x . 9, 9, 25
in�x type . 2
in�x vs. pre�x vs. post�x 10, 10
inherit . 26, 27
integer . 25
integer constant 7
integer type . 2
interval arithmetic 34
is_a . 28
lambda function 15
lazy evaluation 23
left . 31
library . 29
line-terminating characters 8
list

comma-separated 32
operations on lists 32

list operations 32
literal node types 6
local scope . 17
long text . 8
machine interface 20
map . 3
map operation 32
mathematical functions 30
memoization

of arguments 21
of parameters 23

meta-programming 3
module . 35

description 37
import . 36

module description 37
module path . 36
music . 5
name . 48, 25
name type . 2
noise . 5
normal form . 26
normal ELFE . 5
o�-side rule . 6
opcode . 20
opening . 32
operand (in pre�x and post�x) 9
operator . 25
operator symbols 50
operators . 11

overloading . 16
parameter . 15
parameterized types 28
parameters

of types . 25
with properties types 26

parsing . 10, 10
parsing ambiguities 10, 11
pattern . 14, 15

in type . 25
making type pattern speci�c 26
matching . 21

post�x . 9, 9, 25
post�x type . 2
power operator 29
precedence 10, 10, 11
prede�ned types 25
predicate . 32
pre�x . 9, 9, 25
pre�x type . 2
programming paradigm 1
properties . 26

arguments . 27
as parameter types 27

property . 26
default value 27
required . 27
setting . 27

property de�nition 27
pseudo-metric . 4
quote . 8
radix

in integer numbers 7
in real numbers 7

range . 32
real . 25
real type . 2
reduce . 3
reduce operation 32
reference . 21
required property 27
return type declaration 16

in assignment 17
rewrite declaration 15
rewrite declarations 14
rewrite type . 28
right . 31
scope . 20

creation . 21
enclosing . 20
for modules 36
global . 20
local . 17, 20

self . 16
semantic noise . 4
semantics . 13
sequence . 14, 18

evaluation order 18
sequence operator 15
setter . 27
shadowed binding 20
shadowing

in modules 36
short module name 36
signal-noise ratio 5
single quote . 8

46 Section

spaces (for indentation) 6
special forms . 22
standard operators 11
statement . 11, 18
statement precedence 11, 11
structured node types 9
subject and complement 11
symbol . 25, 32
symbols . 45, 8
syntactic noise . 4
syntax

in modules 36
syntax con�guration 5, 10, 11
syntax statement 10, 11, 11
tabs (for indentation) 6
text . 25
text delimiters 8, 13
text functions 30
text literals . 8
text type . 2
tree . 25

operations . 31
tree rewrite . 13
tree rewrite operators 14
type . 24

belonging to a type 24
check . 28
conversions 28, 30
declaration 24

de�nition . 25
explicit type check 28
identifying arbitrary tree shapes 28
multiple notations 26
normal form 26
parameterized type 28
pattern . 25
prede�ned . 25
properties . 26
rewrite type 29

type check . 28
type declaration 16, 24

in assignment 16, 17
vs. type de�nition 25

type declarations 14
type de�nition 25

vs. type declaration 25
type pattern . 25
unde�ned form 21
underscore

as digit separator 7, 7
UTF-8 . 8
value (of text literals) 8
variable . 15
when in�x operator 18
ELFE0 (abstract syntax tree for ELFE) 5
ELFE (eXtensible Language and Runtime 2
elfe.syntax 5, 9, 10, 11, 29

connexion to C.syntax 19

Index 47

List of �gures

Declaration of the factorial function . 3
Map, reduce and �lter . 4
Declaration of if-then-else . 4
O�-side rule: Using indentation to mark program structure. 6
Single-line and multi-line comments . 6
Valid integer constants . 7
Valid real constants . 7
Valid text constants . 8
Long text and indentation . 8
Examples of valid operator and name symbols . 9
Default syntax con�guration �le . 11
Use of the syntax speci�cation in a source �le . 11
C syntax con�guration �le . 13
Example of rewrite declaration . 14
Example of data declaration . 14
Example of data declarations containing type declarations . 14
Example of guard to build the Syracuse suite . 14
Example of assignment . 14
Example of sequence . 15
Examples of index operators . 15
Examples of tree rewrites . 15
Constants vs. Variable symbols . 15
Declarations are visible to the entire sequence containing them . 16
Declaring a comma-separated list . 16
Declaring a complex data type . 16
Simple type declarations . 16
Creating a new binding . 17
Assignment to existing binding . 17
Assigning to new local variable . 17
Assignment to references . 17
Assigning to parameter . 17
Guard limit the validity of operations . 18
Code writing A, then B, then f(100)+f(200) . 18
Structured data . 19
Creating an interface for a C function . 19
Generating machine code using opcode declarations . 20
Evaluation for comparison . 23
Evaluation for type comparison . 23
Explicit vs. lazy evaluation . 23
Simple type declaration . 25
Simple type declaration . 25
Using the complex type . 25
Binding for a complex parameter . 26
Making type A equivalent to type B . 26
Named patterns for complex . 26
Creating a normal form for the complex type . 26
Properties declaration . 26
Color properties . 27
Setting default arguments from the current context . 27
Additional code in properties . 27
Data inheritance . 27
De�ning a type identifying an arbitrary AST shape . 28
Explicit type check . 28
Explicit type conversion . 28
Automatic type conversion . 28
Parameterized type . 28
Declaring a range type using an in�x form . 28
Declaration of a rewrite type . 29
Library de�nition of if-then-else . 32
The good function . 33

48 Section

In�nite loop . 33
While loop . 33
Until loop . 33
For loop on an integer range . 33
For loop on a container . 33
Other kinds of for loop . 33
Range and range type de�nition . 34
Ranges as lists . 34
Union type de�nition . 35
Using union types . 35
Enumeration type de�nition . 35
Type matching a type declaration . 35
Import statements examples . 36
Module de�nition . 37
Lazy evaluation of an in�nite list . 38
Controlled compilation . 38
Signature for rewrite code with two variables. 39
Signature for rewrite code with two variables. 40

List of figures 49

List of tables

Type correspondances in a C interface . 20
Arithmetic operations . 29
Comparisons . 29
Bitwise arithmetic operations . 30
Boolean operations . 30
Mathematical operations . 30
Text operations . 30
Conversions . 31
Date and time . 31
Tree operations . 31
List operations . 32
LLVM operations . 38

50 Section

	1 Introduction
	1.1 Keeping it simple
	1.2 Extending the programming language to suit your needs
	1.3 Using Moore's law instead of fighting it
	1.4 Examples
	Hello World
	Factorial function
	Map, reduce, filter

	1.5 Concept programming
	From concept to code: a lossy conversion
	Pseudo-metrics
	Influence on XL

	1.6 State of the implementation

	2 Syntax
	2.1 Spaces and indentation
	2.2 Comments and spaces
	2.3 Literals
	2.3.1 Integer constants
	2.3.2 Real constants
	2.3.3 Text literals
	2.3.4 Name and operator symbols

	2.4 Structured nodes
	2.4.1 Infix nodes
	2.4.2 Prefix and postfix nodes
	2.4.3 Block nodes

	2.5 Parsing rules
	2.5.1 Precedence
	2.5.2 Associativity
	2.5.3 Infix versus Prefix versus Postfix
	2.5.4 Expression versus statement

	2.6 Syntax configuration
	Format of syntax configuration

	3 Language semantics
	3.1 Tree rewrite operators
	3.1.1 Rewrite declarations
	3.1.2 Data declaration
	3.1.3 Type declaration
	3.1.4 Assignment
	Local variables
	Assigning to references
	Assigning to parameters
	Assignments as expressions

	3.1.5 Guards
	3.1.6 Sequences
	3.1.7 Index operators
	Comparison with C

	3.1.8 C interface
	3.1.9 Machine Interface

	3.2 Binding References to Values
	3.2.1 Context Order
	3.2.2 Scoping
	3.2.3 Current context
	3.2.4 References

	3.3 Evaluation
	3.3.1 Standard evaluation
	3.3.2 Special forms
	3.3.3 Lazy evaluation
	3.3.4 Explicit evaluation
	3.3.5 Memoization

	3.4 Types
	3.4.1 Predefined types
	3.4.2 Type definition
	3.4.3 Normal form for a type
	3.4.4 Properties
	3.4.5 Data inheritance
	3.4.6 Explicit type check
	3.4.7 Explicit and automatic type conversions
	3.4.8 Parameterized types
	3.4.9 Rewrite types

	4 Standard XL library
	4.1 Built-in operations
	4.1.1 Arithmetic
	4.1.2 Comparison
	4.1.3 Bitwise arithmetic
	4.1.4 Boolean operations
	4.1.5 Mathematical functions
	4.1.6 Text functions
	4.1.7 Conversions
	4.1.8 Date and time
	4.1.9 Tree operations
	4.1.10 List operations, map, reduce and filter

	4.2 Control structures
	4.2.1 Tests
	4.2.2 Infinite Loops
	4.2.3 Conditional Loops (while and until loops)
	4.2.4 Controlled Loops (for loops)
	4.2.5 Excursions
	4.2.6 Error handling

	4.3 Library-defined types
	4.3.1 Range and range types
	4.3.2 Union types
	4.3.3 Enumeration types
	4.3.4 A type matching type declarations

	4.4 Modules
	4.4.1 Import statement
	4.4.2 Declaring a module

	5 Example code
	5.1 Minimum and maximum
	5.2 Complex numbers
	5.3 Vector and Matrix computations
	5.4 Linked lists with dynamic allocation
	5.5 Input / Output
	5.6 Object-Oriented Programming
	5.6.1 Classes
	5.6.2 Methods
	5.6.3 Dynamic dispatch
	5.6.4 Polymorphism
	5.6.5 Inheritance
	5.6.6 Multi-methods
	5.6.7 Object prototypes

	5.7 Functional-Programming
	5.7.1 Map
	5.7.2 Reduce
	5.7.3 Filter
	5.7.4 Functions as first-class objects
	5.7.5 Anonymous functions (Lambda)
	5.7.6 Y-Combinator
	5.7.7 Infinite data structures

	6 Implementation notes
	6.1 Lazy evaluation
	6.2 Type inference
	6.3 Built-in operations
	6.4 Controlled compilation
	6.5 Tree representation
	6.6 Evaluation of trees
	6.7 Tree position
	6.8 Actions on trees
	6.9 Symbols
	6.10 Evaluating trees
	6.11 Code generation for trees
	6.11.1 Right side of a rewrite
	6.11.2 Closures

	6.12 Tail recursion
	6.13 Partial recompilation
	6.14 Machine Interface
	6.15 Machine Types and Normal Types

	Index
	List of figures
	List of tables

